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Abstract 

A shape grammar is a formalism that has been widely applied, in many different fields, to 

analyzing designs. Computer implementation of a shape grammar interpreter is vital to both 

research and application. However, implementing a shape grammar interpreter is hard, 

especially for parametric shapes defined by open terms. 

This dissertation explores the problem of implementing a shape grammar interpreter, 

which arose in the context of the AutoPILOT project, in which we were seeking an 

algorithm to determine the interior layout of a building given an input of building features 

and a shape grammar describing the building style. A general approach was adopted based 

on the fact that when applied exhaustively, a shape grammar can generate, as a tree, the 

entire layout space of the building style. The approach essentially requires a parametric 

shape grammar interpreter that caters to a variety of building types. 

As extensions to the fact that shape grammars can simulate any Turing machine, three 

corollaries are found that significantly impact the implementation of a shape grammar 

interpreter. They are the following: a shape grammar may not halt; the language space of a 

shape grammar may be exponentially large; and parsing of a configuration against a shape 

grammar is generally unsolvable. The problem of interpreting a general parametric shape 

grammar is thus in general intractable; even parametric subshape recognition of two-

dimensional, rectilinear shapes may require a high-degree polynomial time. 

In reality, there are distinct but large classes of shape grammars, with differing 

underlying characteristics, for which interpreters are known to be computationally tractable. 

In this dissertation, I present a practical, 'general' paradigm for ensuring the tractability of 

designed shape grammars and implementing such shape grammars. 

Even these tractable shape grammars may significantly differ from one another. A 

further way of classifying these tractable shape grammars, optimally in my belief, is by the 

types of data structure capable of carrying out their rule application. There are, of course, 

other factors that influence the computation of shape grammars; these include the description 

language and all adopted underlying manipulations. As a consequence, the paradigm is 

augmented so that every interpreter is supported by an application programming interface-
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wise (API-wise) framework, which comprises an underlying data structure, basic 

manipulation algorithms, and a description meta-language. The paradigm specifies an 

overall framework comprising a series of sub-frameworks. The overall framework is capable 

of ensuring the computation for a specified shape grammar interpreter. Shape grammars, 

which follow such a framework, are termed as computation-friendly. 

The concept of the overall framework is detailed by examining three sub-frameworks. 

These include one over 2D rectangular shapes (Rectangular sub-framework), one over 2D 

polygonal shapes (Polygonal sub-framework), and one for shapes describable by a graph 

structure (Graph sub-framework). The issue of how to develop a computation-friendly shape 

grammar is explained and illustrated by using the Baltimore rowhouse grammar as the 

exemplar. 

The rectangular sub-framework, which has direct application to the AutoPILOT project, 

is examined in detail. This includes an investigation of estimating an initial interior layout 

from the feature input by constraints solution, and the application of spatial constraints from 

an estimated initial layout to prune the layout tree and 'fix' the open terms of the 

intermediate configurations. The building feature input for the AutoPILOT project is 

typically difficult to obtain. The technical feasibility of automatically extracting building 

features from image data is examined by comparing two pipelines, an ideal pipeline and a 

realistic pipeline. 

In summary, in this dissertation, I develop a general approach for determining building 

interior layouts from exterior features with the aid of shape grammars. Central to the general 

approach, issues of implementing a shape grammars interpreter are formally investigated by 

complexity analysis. Subsequently, a practical 'general' paradigm is developed and 

demonstrated by sub-framework examples. The paradigm facilitates the development of a 

practical shape grammar interpreter and is readily extensible to future development. 

v 
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Chapter 1 Introduction 

Imagine a gorgeous spring day, going out for a relaxed stroll, possibly, with your dog, 

when a striking window in the half-timbered wall on the second floor of a building 

catches your attention. Clearly, you can see that the building is a house (Figure 1-1). 

Figure 1-1: 519 Devonshire Street, Pittsburgh, PA 
(Source: photograph, Kui Yue) 

Quite possibly, you recognize that the window belongs to a bedroom. Without any 

other evidence, it is perhaps harder to decipher much more, for example, whether or 

1 
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not the room is the master bedroom. The red door (with a Christmas wreath) clearly 

indicates a main entrance; on the second floor, the small-sized window above the 

door suggests a bathroom or, perhaps, a staircase. The porch on the right side of the 

building implies that the room in the interior is a living room. This is somewhat 

confirmed by the presence of the larger window in the wall between the red door and 

the corner of the house. 

You might run across another building on your way, such as the one shown in 

Figure 1-2. 

Figure 1-2: Stever House of Carnegie Mellon University 
(Source: photograph, Kui Yue) 

Although this could be the first time you see this building, you would have no 

difficulty in recognizing its entrance—an overhang clearly demarcates it as well as 

the long vertical curtain window. From the position and shape of the curtain window 

seen on the right, you might guess that the interior is a staircase; you probably even 

see some stairs through the glass. What about the space inside the curtain window 

right above the entrance? From your experience, most likely, you would conjecture it 

to be a public space. What makes you more confident is that the shapes on the left 

and right of the building suggest that this is a shared space; such a space is usually 

2 
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public. You might also recognize that the dark box at the highest part of the building 

indicates an elevator—elevators usually have an equipment room on the roof, and 

close to the entrance. The exact function of the building might be harder to guess just 

from its exterior features. But ... if you happen to know that it is a dormitory, then 

you might guess that the interior of each rectangular window is likely to be a dorm 

room unit. 

On the other hand, if the building that attracts your attention looks like the one 

shown Figure 1-3, you are probably going have a harder time. You might recognize 

the entrance as well as the positions of the central elevator and staircases. But the 

facade is so uniform that it says little about the interior except in this case some of 

the glass windows are translucent. This may not always be the case for buildings 

with similar facades. 

Figure 1-3: Warner Hall of Carnegie Mellon University 
(Source: photograph, Kui Yue) 

3 



www.manaraa.com

1.1 Motivation 

As the above scenarios suggest, in general, it might not be difficult for a human to 

roughly 'predict' the layout of the interior of a building from observations of their 

exterior and surrounding features such as entrances, windows, ornaments, 

decorations, etc. This is, perhaps, particularly true of familiar buildings. On the 

other hand, it seems an extremely hard task for a machine to accomplish given 

present day technology. 

Although the precise mechanism for human recognition remains unclear, yet, we 

may safely conclude that such ability relies on reasoning based on accumulated 

knowledge of the past. In the absence of such knowledge, for example, an individual 

in an unfamiliar, say different, cultural or vernacular, setting might still find it 

difficult to guess the interior layout of a building, or even the nature of the building. 

This is typical of the kinds of problems encountered in building restoration and 

preservation activities. This leads us to conjecture that if there are ways of providing 

a machine with the necessary knowledge, together with algorithms to reason against 

features as inputs, the machine might be able to generate possible layouts, at least, 

for buildings of certain special types. 

Potentially, this technology is useful for a variety of practical applications. For 

instance, assessing the environment impact of demolition and salvage of building 

stock requires one to estimate the amount of renewable materials—the city of 

Baltimore is a case in point (Lund and Yost, 1997). Automating the process of 

interior layout determination would greatly assist this process. 

Even for humans, it can be extremely hard to determine the interior layout of 

some buildings from their exterior features. The plain office building shown in 

Figure 1-3 is one such example. Another is Frank Gehry's Walt Disney Concert Hall 

(Figure 1-4), which does not conform to any normal architectural conventions. 

Clearly, it is unlikely that one can develop a general computational solution. 

4 
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i 

Figure 1-4: The Walt Disney Concert Hall by Frank Gehry 

(Source: http://www.architectureweek.com/2003/1217/design 1-1 .html; accessed Mar 2009) 

On the other hand, many buildings follow a pattern book (Downing, 1981; 

Flemming et al., 1985; Hayward and Belfoure, 2005), and as such provide a handle 

on how to tackle the problem. That is, there are buildings that vary according to well-

defined configurational patterns, and/or to certain well-established sets of regulations 

and dimensions. In this way, collections of buildings can be recognized as belonging 

to a particular style. Among these, the Frank Lloyd Wright's Prairie House (Koning 

and Eizenberg, 1981), Queen Anne House (Flemming, 1987) (Figure 1-5), and the 

Baltimore Rowhouse (Hayward, 1981) (Figure 1-6) are well-known examples of 

building styles. Employing knowledge about building styles might make the 

problem more tractable. 

5 
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In terms of human designs, a pattern book might well suffice, whereas, in terms 

of programming, a computational mechanism is needed to represent style data 

encapsulated in a pattern book. I employ shape grammars (Stiny, 2006), although it 

is possible to use other rule-based or generative approaches to describing buildings 

that fall within a particular style. A shape grammar provides a remarkable facility for 

capturing the spatial and topological aspects of building styles and for generating 

such designs. 

In principle, practical design layout determination should ideally start with 

images of building exteriors and surroundings, the counterpart to the human vision 

system. Current computer vision technologies offer the promise to automatically 

extracting building features from image data (Stamos and Allen, 2000; Frueh et al., 

2004). In this dissertation, the feasibility of this approach is examined by comparing 

two pipelines: an ideal pipeline, based on the requirements of the research question, 

and a realistic pipeline, based on state-of-art computer vision technologies. 

1.2 Research question 

Assuming that an image has been appropriately preprocessed so that the desired 

feature inputs are available, my research question can be formalized as follows: 

Is it possible to "reasonably accurately" determine the interior layout of a building 

from its exterior features and an "appropriate" representation of its building style? 

My response to this question is given in the form of an algorithm, which takes as 

input, a collection of exterior building features, and employs a shape grammar to 

encapsulate the building style. The role of a shape grammar as a descriptor of style, 

as previously mentioned, has been richly documented in the literature (Stiny, 1977; 

Knight, 1980; Stiny, 1980b; Knight, 1981a; Knight, 1981b; Knight, 1983; Knight, 

1989; Stiny, 1991; Stiny, 2006), and I will assume that, for the purpose of this 

dissertation, this body of work satisfies any requirement of proof. Building feature 

inputs include the footprint of each story, as well as a reasonably complete set of 

exterior features, e.g., windows, chimneys and surrounding buildings. I do not base 

7 
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accuracy of determination on any statistically derived metric; instead, I will rely on 

visual comparison between generated outcome and ground truth as the basis for 

verification. My focus and emphasis in this dissertation is solely algorithmic. 

I adopt a general approach (Figure 1-7) based on the fact that when applied 

exhaustively, a shape grammar can generate, as a tree, the entire layout space of a 

building style. The approach begins with an initial layout estimation employing 

constraints on the building feature input. Spatial and topological constraints from this 

estimate are then used to prune the layout tree and 'fix' the possible open terms in 

the current configuration. The layouts that remain correspond to the desired layouts. 

Note that both the initial layout estimation and the layout tree generation can be an 

exponential search. However, in this thesis, they are restricted in a way that both 

search becomes polynomial. 

Feature input 

i r 

Initial layout 
estimation 

i ' 

Spatial & topological 
constraints 

Shape grammars 

Prune & fix 
i 

application of 
shape rules 

r 

Layout tree 
(Layout space) 

i ' 

Desired interior layouts 

Figure 1-7: General approach to layout determination 

Initial layout estimation is achieved by using various constraints from exterior 

features together with prior knowledge, namely, constraints resolution. Pruning a 

8 
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layout tree, effectively, is to find a tree node with layout consistent with the partial 

layout estimate, 'fix' the open terms in the configuration if applicable, and continue 

to apply the subsequent shape rules. Such a node is typically internal, although, it 

could be, luckily, the root node. In each case, the approach essentially requires a 

parametric shape grammar interpreter that caters to a variety of building types; for 

layout estimation, it would be impractical to implement individual interpreters for 

each grammar. 

A single general parametric shape grammar interpreter has long been a dream in 

the research community. However, implementing such an interpreter is considered 

difficult (Gips, 1999; Chau et al., 2004). But, the reasons have not always been 

apparent. This dissertation attempts to tackle this problem by a formal examination 

of tractability of the shape grammar formalism. The conclusion reached is that the 

problem of interpreting a shape grammar is, in general, intractable. This conclusion 

essentially negates the feasibility of a single general parametric shape grammars 

interpreter; whence, a practical 'general' paradigm that comprises a set of sub-

interpreters is proposed. The paradigm is augmented by a set of API-like frameworks, 

one for each interpreter for each class of tractable shape grammars. I call such shape 

grammars as computation-friendly. Moreover, the paradigm is targeted at extant 

shape grammars so that, if need be, they can be modified to be tractable. The 

paradigm is demonstrated for the class of shape grammars that can be supported by a 

rectangular sub-framework, into which the majority of building grammars fall. 

In this dissertation, I focus on buildings describable by shape grammars. Figure 

1-8 indicates the scope of this research relative to the universe of all buildings. As 

there is no statistical data on how many buildings fall into each category, the 

assumption here is that there are a large number of buildings that follow pattern 

books; among these, there is a large proportion, which is describable by shape 

grammars. If we restrict the class of buildings considered to those that have been 

constructed, and further, if we were to reverse engineer the assembly of those 

processes, we might be able to provide a pattern book description for their designs. If 

B represents the set of all buildings, BPB, the set of all buildings describable by 

9 
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pattern books and BSG, the set of all buildings describable by shape grammars, then 

we may safely state that BSG CZBPB <^B. However, whether BSG = BPB, or the unlikely 

BPB = B requires substantive analysis, which is beyond the scope of this dissertation. 

Figure 1-8: Buildings in the research scope 

1.3 Chapter overview 

Figure 1-9 shows how the chapter structure of this dissertation is organized against 

the proposed general approach to layout determination and which aspects have been 

actually implemented. Chapter 2 provides background review supporting all chapters 

except chapter 3, which also heavily relies on the literature, investigating the 

feasibility of using existing computer vision techniques to automatically extract 

building exterior features from image data. A large part of Chapter 2 is about shape 

grammars, including evolution of shape grammar definitions, trends of the 

development of shape grammars, as well as comparison of shape grammars and 

phrase structure grammars, where extra theoretical results as extensions to the fact 

that shape grammars can simulate any Turing machines are made. 

10 
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Chapter 2 

Image data 

Chapter 3 (not implemented) 

Feature input 

Initial layout 
estimation 

Spatial & topological 
constraints 

Prune & fix 

Chapter 7 
(implemented) 

Chapter 4, 5, and 6 
(implemented) 

Shape grammars 

Exhaustive 
application of 
shape rules 

Layout tree 
(Layout space) 

Desired interior layouts 

Figure 1-9: Overview of the chapter structure and implementation 

The generation of a layout tree essentially needs the implementation of a 

parametric shape grammar interpreter, which is investigated in chapters 4, 5, and 6. 

Chapter 4 examines the computational characteristics of parametric shape grammars, 

and identifies factors influencing the tractability of shape grammars in general; a 

practical paradigm comprising a set of sub-frameworks is then proposed, whence the 

concept of computation-friendly shape grammars. Chapter 5 explains the paradigm 

in details through three examples of sub-frameworks. Chapter 6, using the Baltimore 

rowhouse grammar as an example, illustrates how to develop a computation-friendly 

shape grammar. 

The constraints associated with the feature input have to been transformed into a 

form, which can be computationally applied to prune the layout tree. Chapter 7 
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employs two test cases, the Baltimore Rowhouse and Queen Anne House, to 

describe how to use constraint resolutions to derive an initial layout and examine 

how to use the constraints from the derived initial layout to prune the layout tree and 

fix the open terms so that the desired interior layout can be determined. Chapter 8 

ends this dissertation with a conclusion, and a discussion of potential future research. 

1.4 Assumptions 

As computer implementation is restricted to certain specific topics covered in this 

dissertation, certain assumptions are made. I assume that the feature input has been 

made available; that is, it has been preprocessed in a way that is ready for desired 

usage. The criteria for choosing building features are that they are not difficult to 

obtain from image data and that they are visible from the exterior, e.g., doors, 

windows, building footprint, chimneys from overhead view (e.g., in Google map). 

The discussion given in this dissertation on building feature from image data is 

theoretical; it has not been implemented by the author. 

1.5 Summary 

The problem of determining the interior layout of building from exterior features 

originated in the US Army Corp of Engineer Research and Development Center, 

Champaign-funded project, AutoPILOT—Automated Prising of Interior Layouts 

Over building Types. Conceptually, the project tackles the problem with the aid of 

shape grammars in conjunction with a building ontology system developed at CERL. 

The converse problem is used as a vehicle to investigate shape grammars in a 

practical context, in particular, the problem of implementing a parametric shape 

grammar interpreter. This leads to an examination of the tractability of shape 

grammars, developing a practical 'general' paradigm comprising a set of sub-

interpreters each backed by its own sub-framework, and whence, the notion, 

considered in this dissertation, of computation-friendly shape grammars. 
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Chapter 2 Background review 

There is not much literature relating directly to the problem of determining building 

interior layouts from exterior features, since this idea is quite unique. There are, 

however, three major methodologies that are applied in this research, namely, shape 

grammars, constraints, and object recognition from image data. Each methodology, 

in itself, specifies a broad field. Since extracting building features from image data 

(given in Chapter 3) relies heavily on existing techniques in objection recognition, 

only the relevant and related literature is reviewed there. Constraint-based techniques 

have been widely adopted in many fields, and there is a vast literature on the subject. 

The review given here is intended neither to be full-blown nor exhaustive; only those 

works closely related to the subject matter of this dissertation are listed. The 

formalism of shape grammars is central to the general approach to layout 

determination and will be elaborated upon in some detail. 

2.1 Existing work on layout determination 

The closest related work is found in the field of robotic mapping. Roberts et al. 

introduce an approach, which generates high-confidence layouts of building interiors 

from limited exterior and interior structural observables (Roberts et al., 2007). The 

approach starts with an algorithm, which generates interior layouts of urban 

buildings based on a rule set. The rule set is derived from engineering and 
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architectural practices for the particular building type and for the geographic region 

in which the building is located. Given the exterior footprint dimensions of the 

building, the rule set systematically divides areas of the building into sub-areas based 

on relative dimensions of these areas, relationships between sub-areas, ability to 

move from one sub-area to another, and typical component dimensions. The layouts 

so generated are then refined by rule-based inferences, which operate on limited 

interior structure observables. 

2.2 Constraint-based techniques 

Constraint-based techniques have been widely used in computational design, for 

example, space layout planning (Akin et al., 1992; Yoon, 1992; Damski and Gero, 

1997; Lee and Lee, 2006; Narahara and Terzidis, 2006; Donath and Bohme, 2007). 

Design is viewed as process of problem solving. Design requirements, rules, 

relations, and natural laws can be further viewed as constraints. Design becomes a 

process of constraints exploration (Gross, 1986), completed when all constraints 

have been satisfied. Such a paradigm matches the model of constraint satisfaction 

problem (CSP) (Russell and Norvig, 2002), which has been widely studied in the 

field of Artificial Intelligence, and the many techniques developed there can be taken 

advantage of. Constraint satisfaction, however, is not easy. Design constraints are 

usually numerous, complex and highly non-linear. Satisfying a large set of arbitrarily 

complex equality and inequality constraints is, in essence, a non-linear programming 

problem (Krishnan, 1990). Techniques, like forward checking and constraint 

propagation, have been developed to speed up the searching process for a solution. 

In the context of this research, there are constraints from the exteriorly 

observable features, while constraints, such as design requirements, are unknown. 

Consequently, only partial layout information can be obtained from the constraints of 

building exterior features. Nonetheless, this partial layout can be used to prune the 

tree of the layout space generated from the shape grammars. 
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2.3 Shape grammars 

In computational architecture design, there are hard research questions that require 

algorithmic answers. For example, aesthetically, functionally, structurally or 

otherwise, how does a computer recognize the commonality shared by a corpus of 

design artifacts, which humans believe to be in the same style? How do we specify 

an algorithm so that new design artifacts in the same style can be generated? 

In trying to answer such style-related questions, spatial grammars have been 

favored as the preeminent formal method, because, they bridge the gap between 

visual expressions of form preferred by designers, and symbolic encoding required 

by computers (Carlson, 1993; Heisserman, 1994; Stiny, 2006). However, the passage 

from one side of the gap, namely, visual expression, to the other, symbolic encoding, 

is far from trivial. 

Of the various spatial grammar systems around, perhaps, the best known is 

shape grammar (Stiny, 2006)—a production system consisting of shape rewriting 

rules. Every design can be considered and represented as a shape that, itself, has been 

generated as a sequence of shapes. The sequence always starts with a given initial 

shape. Each shape in the sequence is produced from the previous shape by 

substituting a part of it for another. The two parts constitute a shape rule, 

conveniently, the left-hand side and right-hand side shapes. To ensure closure of the 

rule application sequence, a terminal rule is typically specified, which prevents other 

rules from being subsequently applicable. Shape rules are usually further classified, 

so that shape or design generation can be broken down into phases. 

2.3.1 Shape, shape representation, and shape rules 

In the purest sense, a shape grammarist views shapes from the standpoint of a 

designer. This may differ quite distinctly from how shapes are viewed in other 

disciplines. Here, a shape is an arrangement of a finite number of spatial elements, 

each with a definite boundary of limited but non-zero extent, for example, points, 

line segments, plane segments etc.—these spatial elements are said to be embedded 

in the shape. In Stiny's widely-quoted definition (Stiny, 1980a), shapes were limited 
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to two dimensions and being rectilinear. Elsewhere, shapes have been considered in 

three dimensions (Krishnamurti and Earl, 1992; Stouffs and Krishnamurti, 2006), or 

comprising of curves (Chau, 2002; McCormack and Cagan, 2003; Jowers, 2006). 

In shape grammars, the shape representing a design is not fixed; rather, it 

changes dynamically throughout a computation. Any shape, except those composed 

of distinct isolated points, can be viewed, and hence, decomposed into spatial 

elements in indeterminately many ways. Each such decomposition provides a 

specific way of describing a shape. For example, Figure 2-1 shows, among the 

indefinitely many ways, a few distinct decompositions of the shape made up of two 

overlapping rectangles. 

(a) Shape 

(b) Shape view examples 

Figure 2-1: Sample decompositions of a shape 

Figure 2-1 illustrates another phenomenon—that of emergent shapes. That is, 

when two or more shapes are brought together, new shapes emerge as a result of the 

interaction between the primary shapes. Figure 2-2 illustrates a situation where when 

two gridline shapes overlap, an octagon emerges (Krishnamurti and Stouffs, 1997). 
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(b) (c) 

Figure 2-2: Emergent octagon from two overlapping gridline shapes 
Adapted from (Krishnamurti and Stouffs, 1997) 

In any rule-based computation involving shapes, it is desirable to provide a 

consistent representation for shapes in which all different views can be described in a 

unique, canonical way. This is achieved by representing a shape by its maximal 

spatial elements (Stiny, 1980a; Krishnamurti, 1992b). Here, collinear elements, 

which pairwise overlap or share a boundary (in the case of say, lines, an end point); 

get merged to form a single element that is maximal within the representation. In the 

literature, shapes under maximal representation are also called in their reduced form 

(Stiny, 1975). 

The concept of subshape is important to shape grammars. A shape is said to be a 

subshape of a second shape whenever each element of the former is embedded in an 

element of the latter. For instance, the emboldened parts of the shapes in Figure 2-3b 

are subshapes of Figure 2-3a. Note, again, that there are infinitely many subshapes. 

Of these, the empty shape is a special shape, consisting of no spatial elements, and it 

is a common subshape to any and every shape. 
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(a) Shape 

(b) Some subshape examples 

Figure 2-3: Some subshape examples 

In generating designs, shapes are often tagged with markers or labels, in order to 

deal with functional and other non-spatial design features. The subtle differences 

between markers and labels are explained in Section 2.3.3 under subsection headings, 

SG-DEF-1974 and SG-DEF-1977. Unless stated otherwise, in this dissertation, both 

terms are used interchangeably with respect to guiding the application of shape rules, 

with the convention that labels are typically alphanumeric strings associated with a 

shape element, while markers are symbols used to control the status of the entire 

configuration. Markers and labels can be erased or added during the generation of a 

design. Figure 2-4 shows two example shape rules taken from the Queen Anne 

grammar (Flemming, 1987). Here, shape rule 0 replaces the initial shape by a 

hallway room H, changing the status marker from H to R. In shape rule 1, the left-

hand side is a room with label H. In the rule, the room has a corner with label B and 

another with a parameterized label X, which could be either B (back) or F (front) 

depending on the context. If the left-hand shape exists in the currently generated 

shape, then, through this shape rule application, another room R is added, with labels 

and markers updated accordingly. 
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B X 

B X | R | 

_R ' R X = ForB 

Left-hand side Right-hand side 

Rule 0 Rule 1 

Figure 2-4: Sample shape rules from the Queen Anne grammar 

In applying a shape rule, the left-hand shape has to match—that is, be equal to— 

a subshape of the target configuration under an allowable geometric transformation. 

Unless stated otherwise, the allowable transformation is commonly taken to be a 

similarity—that is, an isometry with uniform scale. It should be noted that under the 

subshape relationship, the associated markers and labels have to match their 

counterparts in the subshape. 

There are a number of different ways of controlling or driving shape rule 

application. In some instances, markers and labels play an important role; in other 

instances, the shape itself may be of more importance. Typically, when employing 

markers and labels, these identify and limit which rules can or cannot be applied, and 

in each case, the shape is simply transformed as desired. A terminal rule typically 

removes all markers and labels. Figure 2-5 shows two examples using the shape 

rules in Figure 2-4. 

+, 
Left-hand side 

B B 

+ i 

Right-hand side 
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B B 

B B 

R 

H 

R 

J 
H 

R 
1 

R 

R 
!== 

H 
R 

F F F F 

+ H + P +, +„ R 'R 

(a) 

B 

+p 

B B 

H R 

R 

H R 1 
R 

R 

H R 

F F 

+H +„ +„ +* +„ 
(b) 

Figure 2-5: Two examples of shape rule application driven by markers and labels 

Another way of controlling shape rule application is by recognizing appropriate 

subshapes. The left-hand shape is transformed, within allowable limits, so that a 

subshape of the given shape can be tested for a match; if successfully found, the 

shape rule is applicable to that subshape. Figure 2-6 is an example, taken from 

(Stiny, 2006), in which Figure 2-6b shows the repeated application of the shape rule 

in Figure 2-6a through recognition of a suitable rectangle as the selected subshape. 

(a) Shape rule 

d •=> <=3 \ c=6 

(b) Shape rule application 

Figure 2-6: Example of shape rule application driven by subshape recognition 
Adapted from (Stiny, 2006) 
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In some cases, just allowing similarity transformations can restrict the shape 

grammar. Strictly, under similarity, rule 1 of Figure 2-4 cannot apply in some steps 

of Figure 2-5, as it needs an anamorphic scaling of a rectangle—in other words, by 

matching a rectangle to another rectangle. Figure 2-7, taken from (Stiny, 2006), 

illustrates an even 'wilder' example. Here, basically, a convex quadrilateral can 

match another. To handle such requirements, shape grammars are extended to 

parametric shape grammars, which allow open terms (variable coordinates of points) 

to be determined when applying the shape rule. 

(a) Shape rule 

(b) Shape rule application 

Figure 2-7: Example of a parametric shape grammar 
Adapted from (Stiny, 2006) 

2.3.2 Existing shape grammar applications and interpreters 

Figure 2-8 is based on the review of Chau et al. for shape grammars in the literature 

(Chau et al., 2004). These shape grammars range from the field of painting, 

decorative arts, architectural plans, to engineering designs, with about half dealing 

with architectural plans, almost all with the intent of capturing a specific style. 
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> Urform < Anamorphism 

Bridgework 

• Chinese lattices 

• Diebeukorn's Ocean Park paintings 

• De Stiji arts 

' Greek meanders 

• Hepplewhite chairs ! 

I . . . . ! . „ - . . . . . „ I 

• Palladian plans « FLW1 Usonian houses 

• FLW1 prairie houses 

' Paintings (4) ; 

FLW1 windows j ' 

Decorative arts (4) 

• Wren's churches • Malagueira houses 
• Ndebele homesteads * YiiisiMO fashi 

•Mughul gardens • Queen Anne houses 
; • Japanese tearooms ;' 
i • Bungalows of Buffalo > 

! • Casa Giuliani Frigerio * Si He Yuan plans 

* Taiwanese houses 
• Turkish houses 

• Simmons Kail Student dormitory 
• Habitat ti/r litimanity housing 
j " 1 .MK3 high-rise apartment 
I •I'atin houses of Marrakech3 

Architectural plans (19) 

Truss 

Engineering designs (9) 

• Aircraft pipings i ! 
structures • MEMS grammar ; 

• Stepped shafts ; ; 
• Coffee makers ! 

• Mannequin grammar i 
; • GM Biik:k ; 

; • Harlcy-Davidson j 
! ! • Cross-over vehicles 

Year 1975 1980 1985 1990 1995 2000 2005 2010 

'Frank Lloyd Wright 
2LudwigMies van der Rohe 
3 the Medina of Marrakech 

Figure 2-8: Exemplar shape grammars 
Adapted and modified from (Chau et al., 2004) 

Given the inherently computational nature of shape grammars, there have been 

significant efforts made toward their implementation. There are two desirable 

requirements for any general shape grammar interpreter. The first is support for 

shape emergence; the second, support for automatic subshape recognition1. Progress 

in meeting these two challenges depends on the complexity of the shape, which can 

be described in the following way. If we were to classify shapes as either 2D or 3D, 

rectilinear or with curves, parametric or otherwise, then, clearly, parametric 3D 

curved shapes are the most complex. For convenience and accuracy of discussion, 

The two features are not altogether independent. Automatic subshape recognition does not 
necessarily mean support for shape emergence. However, the converse is true; that is, interpreters 
supporting shape emergence are usually capable of automatic subshape detection. Most extant 
implementations do not support shape emergence. 
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we define shapes to be one of the eight types identified in Table 2-1. For example, 

non-parametric 2D rectilinear shapes are of Type I. 

Table 2-1: A classification of shapes 

Non-parametric 
Parametric 

Rectilinear 

2D 
I 
V 

3D 

II 
VI 

With< 

2D 

III 

vn 

:urves 
3D 

IV 
VIII 

Table 2-2 is an extraction from (Chau et al., 2004) of shape grammar 

interpreters found in the literature. Gips implemented the first shape grammar 

interpreter (Gips, 1975). It handled non-parametric non-self-intersecting 2D 

polygonal shapes. Emergent shapes were not considered. Krishnamurti gave the 

theoretical basis for computing 2D shape grammar systems (shapes of Type I) and 

implemented the first interpreter capable of detecting emergent shapes and 

supporting automatic subshape detection (Krishnamurti, 1981; Krishnamurti, 1982). 

This implementation featured the maximal representation of line shapes and 

employed homogeneous coordinates. Krishnamurti and Giraud rewrote the two-

dimensional interpreter in Prolog, a logic programming language (Krishnamurti and 

Giraud, 1986). Chase and Tapia developed grammar interpreters based on the 

algorithms developed by Krishnamurti (Chase, 1989; Tapia, 1999). Both were non-

parametric interpreters that work with shape grammars comprised solely of line 

shapes. Tapia's GEdit is known for its interface design. The maximal element 

representation was extended to 3D (Krishnamurti and Earl, 1992; Krishnamurti and 

Stouffs, 2004; Stouffs and Krishnamurti, 2006). Stouffs implemented shape 

arithmetic in 3D (Stouffs, 1994). Algorithms for subshape recognition in 2- and 3-D 

shapes made up of different kinds of planar elements are given in (Krishnamurti and 

Earl, 1992; Krishnamurti and Stouffs, 1997); however, there are no corresponding 

practical implementations. 
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Table 2-2: Existing implementations of shape grammars 
Adapted and modified from (Chau et al., 2004) 

1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Name 

Simple interpreter 

Shape grammar 
interpreter 

Shape generation system 

Queen Anne houses 

Shape grammar system 

Genesis (CMU) 

Grammatica 

GRAIL 

Genesis (Boeing) 

GEdit 

Shape grammar editor 

Implementation of basic 
grammar 

Shape grammar 
interpreter 

SG-Clips 

3D Shaper 

Coffee maker grammar 

MEMS grammar 
Shaper 2D 

U13 shape grammar 
implementation 

Shape grammar 
interpreter6 

Reference 

(Gips, 1975) 

(Krishnamurti, 1982) 

(Krishnamurti and 
Giraud, 1986) 

(Hemming, 1987) 

(Chase, 1989) 

(Heisserman, 1991) 

(Carlson, 1993) 

Krishnamurti and 
Stouffs 1992-64 

(Heisserman, 1994) 

(Tapia, 1996) 

(Shelden, 1996) 

(Simondetti, 1997) 

(Piazzalunga and 
Fitzhorn, 1998) 

(Chienetal., 1998) 

(Wang, 1998) 

(Agarwal and Cagan, 
1998) 

Tool(s) used 

SAIL1 

FORTRAN 

PROLOG2 

PROLOG 

PROLOG 

C/CLP(R)3 

C 

C++/CLP(R)3 

LISP5 

AutoLISP 

AutoLISP 

ACIS Scheme 

CLIPS 

Shape 
emergence 
No 
Yes 

Yes 

No 
Yes 

No 
No 

No 
Yes 

Yes 

No 

No 

No 
Java/Open Inventor No 

Java 

(Agarwal et al , 2000) LISP 

(McGill, 2001) 

(Chau, 2002) 

(Trescak et al., 2009) 

Java 

Perl 

Java 

No 

No 
Yes 

Yes 

2D/3D 

2D 

2D 

2D 

2D 

2D 

3D 

2D/3D 

2D/3D 

2D 

2D 

3D 

3D 

2D/3D 

3D 

2D/3D 

2D 

2D/3D 

3D 

2D 

1 Stanford Artificial Intelligence Language 
2 SeeLog developed at EdCAAD 
3 IBM CLP(R) compiler 
4 Private communication 
5 Macintosh Common LISP 
6 http://www2.iiia.csic.es/~ttrescak/sgi.html 

McCormack and Cagan have developed a parametric interpreter aimed at shapes 

consisting of curved shapes (Types III and VII) (McCormack and Cagan, 2003). The 

interpreter works by determining a straight-line equivalent of a curved shape, which 

is then used, with reference to the original curved shape, to detect emergent shapes. 
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It was used to implement the Buick brand shape grammar (McCormack et al., 2004). 

Chau implemented an interpreter targeted at the general shapes (Types IV and VIII) 

(Chau, 2002). But the examples shown are actually 2.5D (3D generated by extrusion). 

There are a number of computer implementations listed in Table 2-2, which do 

not use a maximal element representation. For instance, Heisserman uses a graph-

based boundary solid representation for shapes of Type II (Heisserman, 1991); 

Carlson applies a nondeterministic functional programming language as an 

interpreter of 2D shapes (Types III and VII) (Carlson, 1993); and Piazzalunga and 

Fitzhorn rely on ACIS, an extant graphical modeling kernel, to implement an 

interpreter targeted at 3D shapes of Types II and VI (Piazzalunga and Fitzhorn, 

1998). None recognize subshapes, nor deal with shape emergence. 

To summarize, implementation issues for shapes of Type I have been resolved. 

Theoretical investigations for shapes of Type II have been completed though, as yet, 

without full implementation. Implementations for other types of shapes, especially 

parametric shapes, have been attempted; most solve a special case; those claiming 

generality lack proof of completeness. 

2.3.3 Evolution of the definition of shape grammars 

A rigorous definition of shape grammars is essential to the theoretical analysis given 

in this dissertation. The foundation of the subject is given in the seminal article by 

George Stiny and James Gips (Stiny and Gips, 1971), which contains the first formal 

definition of a shape grammar. Since then, there have been several other versions 

appearing in the literature, each reflecting either the understanding at that particular 

time, or a specific research flavor. In the sequel, these definitions are reviewed 

chronologically, exploring important characteristics over the time, capturing the 

tendencies of development, and obtaining insights so that a definition of shape 

grammars appropriate for complexity analysis can be developed. For the 

convenience of discussion, each definition reviewed is named using the format, SG-

DEF-year. Moreover, for the convenience of comparison, when appropriate, 
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different symbol representation systems used in the different definitions will be 

unified according to the convention of the very first definition. 

SG-DEF-1971 

The following is the very first definition {SG-DEF-1971) taken verbatim from the 

seminal article by George Stiny and James Gips, who follow an analogy to phrase 

structure grammars (aka. generative grammars): 

"A shape grammar (SG) is a 4-tuple: SG = <VT, VM, R, I> where 

(1) VT is a finite set of shapes. 

(2) VM is a finite set of shapes such that W* nV\t = 0-

(3) R is a finite set of ordered pairs (u, v) such that u is a shape consisting of 

an element of VT combined with an element of VM and v is a shape 

consisting of (A) the element of Vj contained in u or (B) the element of 

VT contained in u combined with element of VM or (C) the element of 

VT* contained in u combined with an additional element of VT* and an 

element of VM-

(4) / is a shape consisting of an element of VT combined with an element of 

VM. 

Elements of the set VT are formed by finite arrangements of an element or 

elements of VT in which any element of VT may be used in a multiple number of 

times with any scale or orientation. Elements of VT appearing in some (u, v) of 

R or in / are called terminal shape elements (or terminals). Elements of VM are 

called non-terminal shape elements (or markers). Elements (u, v) of R are 

called shape rules and are written u —* v. / i s called the initial shape and 

normally contains a u such that there is a (u, v) which is an element of R. 

A shape is generated from a shape grammar by beginning with the initial 

shape and recursively applying the shape rules. The result of applying a shape 

rule to a given shape is another shape consisting of the given shape with the 

right side of the rule substituted in the shape for an occurrence of the left side 

of the rule. Rule application to a shape proceeds as follows: (1) find part of the 
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shape that is geometrically similar to the left side of a rule in terms of both non

terminal and terminal elements, (2) find the geometric transformations (scale, 

translation, rotation, mirror image) which make the left side of the rule identical 

to the corresponding part in the shape, and (3) apply those transformations to 

the right side of the rule and substitute the right side of the rule for the 

corresponding part of the shape. ... The generation process is terminated when 

no rule in the grammar can be applied." 

In many ways this definition reflects the infancy of shape grammars in the sense 

that the definition is purely shape-based. Markers, which are used to guide the 

application of shape rules, are also shapes distinguishable from the principal shape, 

avoiding the use of any non-shape symbols. There are no restrictions on the types of 

shapes used; that is, in principle, shapes can be combinations of straight lines or 

curves, 2D or 3D, whatsoever. Analogous to phrase structure grammars, the 

operator is defined over W, which is interpreted as a finite arrangement of elements 

of W under transformations of similarity, including the empty shape 0 . This enables 
* 

one to define a shape vocabulary succinctly. Examining carefully, there is no 

operator defined over VM—in all probability, this is a typo— however, this results in 

a definition that is not completely consistent with the shape grammar examples 

(Urform I, II, and III) given in the paper. In particular, the marker for RULE 1 (pp. 

1461) changes in size as well as orientation while the set VM is defined to contain 

only a unique marker. Noticeably, here shape rules can, in effect, only add more 

terminal shapes, with no capacity for subtraction, although markers can be 

eliminated, revised, or exchanged during the application of shape rules. Implicitly, 

the application of a shape rule involves the shape operations of Boolean sum and 

difference; moreover, the recursive application of shape rules requires that both 

Boolean operations are closed over the types of shapes involved. 

2 Notationally, I distinguish between 0, the empty set and 0, the empty shape. 
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SG-DEF-1974 

In his dissertation (Gips, 1974), Gips adopts a new definition for shape grammars 

{SG-DEF-1974), which can be viewed as an improvement over the definition of SG-

DEF-1971. Accordingly3, 

"A shape grammar, SG, is a 4-tuple: SG = <VT, VM, R, I> where 

(1) VT is a finite set of shapes. 

(2) VM is a finite set of shapes such that VT n VM = 0 . 

(3) R is a finite set of ordered pairs (w, v) such that u is a shape consisting of 

an element of VT* combined with an element of VM+ and v is a shape 

consisting of an element of Vj combined with element of VM • 

(4) / is a shape consisting of an element of Vj combined with an element of 

vM*r 

Apart from the operator over VT, and + operators are also defined over VM, 

where VM* = VM U {0}, where 0 is the empty shape. Compared to SG-DEF-1971, this 

augmented definition supports much more powerful shape rules, including the effect 

of shape subtraction. This is achieved by defining u to be in W u VM+ and v to be in 

VT U VM • In other words, any element of VT can appear on either side of a shape 

rule; for a shape rule, when the terminal shape of the right side happens to be the 

terminal shape of the left side with the removal of some elements, the effect is a 

subtraction. The above way of defining shape rules also corrects the inconsistency 

existing in the definition of SG-DEF-1971; markers (non-terminal shapes) can be 

manipulated in the same way as terminal shapes. However, there are still 'defects' 

with this definition. / should be a shape consisting of an element of VT combined 

with an element of VM+ instead of VM , since an initial shape is not allowed to be 

entirely empty. In addition, VM should be defined as a finite set of shapes such that 

VT n VM = 0 instead of VTnVM = 0 , as the latter does not necessarily imply the 

former. As a counter example, consider the situation where VT is a horizontal line 

3 The subscripts t and m in Gips' original formulation have been changed to T and M to be consistent 
in usage with SG-DEF-1971. 
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segment of unit length and VM is a vertical line segment of unit length, then W = VM 

although VT n VM = 0-

Additional to the definition, Gips explains the importance of markers and shows 

their flexible usage. Markers restrict the application of a shape rule to specific parts 

of a shape and help determine the transformation needed to apply the rule. Markers 

are more shape-like than symbol-like; apart from position, their orientation and 

geometrical characteristics can be equally important. For example, in the serial shape 

grammar generating a snowflake curve (SG7), asymmetry of the marker is used to 

force the generation to always proceed in the counter-clockwise direction (Figure 

2-9). As a matter of fact, all the shape grammars in Gips' dissertation are designed in 

such a way to be entirely driven by markers. Moreover, markers are designed in such 

a way that the determination of both the applicability of shape rules as well as the 

corresponding transformations can be easily computed. Once a transformation is 

decided, the application of a shape rule simply becomes the operations of Boolean 

sum and difference. Such Boolean operations are computationally tractable for most 

frequently used shapes. In other words, shape grammars based on this definition are 

largely computation-friendly. 
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Rule 3: 

& 

Rule 4: 

A 

Rule 2 Rule 2 

^ 

Rule 4 

Rule 3 

Figure 2-9: A serial shape grammar for the snowflake curve 
Adapted from (Gips, 1974) 
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SG-DEF-197S 

In his dissertation (Stiny, 1975), Stiny investigated the concept of shape grammars in 

terms of two models, pictorial and formal. The definition of shape grammars in the 

pictorial model is essentially the same as Gips' definition, SG-DEF-1974. However, 

the definition for the formal model (SG-DEF-1975) is 'custom-designed' for analysis, 

analogously to phrase structure grammars. Here, a shape is restricted to consist of 

only line segments. Such shapes are most common, and have certain nice properties. 

For example, all shapes belongs to the set defined by a unit line segment under the 

operator. In contrast, this is not the case for shapes made out of arcs. The following 

is Stiny's definition: 

"A shape grammar of index n is a 4-tuple SG = <VT, VM, R, I> where 

(1) VT is a finite set of shapes. 

(2) VM is a finite set of shapes. 

(3) R is a finite set of shape rules of the form <a, u\,..., u„> —* 

<&, u\, ...,un'> such that (a) a, a ' € VT*R; (b) for all i,l<i<n, 

uie VT , or w, = e, for all i, \<i<n, u{e VM ', and (c) there is an 

i, 1 <i<n, such that w, *S0 and M, * e . 

(4) / is an n+1 tuples of shapes / =<so, mov ..., mo > such that (a) so e W ; 

(b) for all i, l<i<n, mo.e VM*R\ and (c) there is an /, 1 < i<n, such that 

mo. * 50." 

New to this definition is the R operator, which enforces shapes to be in a reduced 

form (maximal lines). The restriction of shapes made out of straight lines makes it 

nearly impossible to distinguish VT from VM • The technique to deal with such 

difficulty is to use shapes with multiple tuples; shapes on different tuples are on 

different 'channels,' which do not interfere with one another. The use of n+1 tuples 

of shapes, together with the symbol e (which behaves as the empty shape, but helps 

to avoid using the symbol SQ), enables shape grammars to be combined to form a 

new shape grammar. Figure 2-10 shows two simple shape grammars SGI and SG2, 

and Figure 2-11 shows a new combined shape grammar of SGI and SG2. In the new 
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shape grammar SG3, the left hand side and right hand side of a basic grammar are 

treated as markers, which are put in different tuples so that multiple shape grammars 

can be combined. This mechanism provides for the definition of composite 

languages of shapes from simple languages of shapes. However, to my knowledge, 

no further work along these lines can be found in the subsequent literature. 

S G ^ ^ T I . V M L R , , ^ 

V-n = {so} 
VMI = {m0} 
R,:<So, mo>-»<Si,mo> 

<s0, m0> -* <s0, s0 > 
I(: <s0, mo> 

SG2 - <VT2, VM2, R2, IJ> 
V T 2 = { S o l 

V M 2 = {m0\} 

R2: < s 0 \ m o ^ —• <Si', m o ^ 

<sn, m 0 > -> <se, s0 > 

l2 :<So\m(/> 

<0,l> 

<0,0> 

<l.l> <0,1> <1/2,1> <1,1> 

<0,l/2> 

s, 

<1,l/2> 

<1,0> <0,0> <l/2,0> <1,0> <0,0> 

SGI 

<0,0> 

<1,1> 

<1,0> 

<0,1> <1/2,1> <],!> 

<0,I/2> 

s. 

<l,l/2> 

<0,0> <l/2,0> <1,0> 

<1,1> 

<l/2,0> 

SG2 

Figure 2-10: Two simple shape grammars: SGI and SG2 
Adapted from (Stiny, 1975) 
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S G 3 = < V T 3 , V M 3 , R 3 , I 3 > 

V T 3 = { S O " } 

VM3= {mo"} 
R3: <s0) So, m0, s0, s0> -+ <sB, s b m0> s0, s0> 

S0, S0, TTlo, S0, So'5' > " -̂Se, S0, S0, S0, S^-* 

<s0, s„, s0, So\ mo > -* K%, s0, s0, S| , m o > 

<S 0 , S0, S„, Se, m 0 > - * <S 0 , S0, S0, S0, S«> 

<s0, mo", s„, mo", sB> —> <s 0 " , s0, s0, sa, s„> 

I3: < sB, So, m0, So', mo'> 

<0,0> <1,0> <0,0> <1,0> 

m„ 

<o,i> 

<0,0> 

<u> <0,1> <1/2,1> <1,1> 

<0,l/2> 

S 

<l,l/2> 

<0,0> <l/2,0> <1,0> <0,0> 

<1,1> 

<o,i; 

<0,0> 

<1,1> 

<1,0> 

<0,1> < l / 2 , l > <1,1> 

<0,l/2> 

s. 

<l,l/2> 

<0,0> <1/2,0> <I,0> 

<1,1> 

<l/2,0> 

SG3 

Figure 2-11: The combined shape grammar of SGI and SG2 
Adapted from (Stiny, 1975) 

This definition also distinguishes a special case of shape rule application. W h e n 

the union of the left hand side of a shape rule has fewer than two points of 
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intersection, there are potentially infinitely many ways to apply such a shape rule. It 

seems that Stiny, at the time, regarded the 'infinitely many ways' unfavorably, 

defining the transformation to be the one, which transforms the left hand side in such 

a way that each element has an identical, rather than a subshape, counterpart in the 

configuration. 

Stiny also showed that shape grammars so defined are as equally powerful as 

Turing machines. Algorithms for shape rule application, and Church's thesis 

demonstrate that Turing machines can simulate any shape grammar. Likewise, a 

shape grammar can be constructed to simulate any Turing machine. The details are 

given in the Section 2.3.5, where I compare and contrast shape grammars and phrase 

structure grammars. 

SG-DEF-1977 

In his now famous paper in which he introduces the Chinese ice-ray lattice grammar 

(Stiny, 1977), Stiny gives the first definition for labeled shapes and parametric shape 

grammars, briefly explaining the corresponding definition for non-parametric shape 

grammars in the appendix to the paper. As Stiny further elaborates on the definition 

of parametric shape grammars in (Stiny, 1980a), the discussion on parametric shape 

grammars is postponed to section SG-DEF-1980, and the focus here is on labels and 

markers. The following is a brief paraphrase of the definition, using, as much as 

possible, Stiny's original language: 

« A shape is a finite arrangement of straight lines of limited but nonzero length 

in two or three dimensions. Shapes are specified by drawing them in a 

Cartesian coordinate system. The coordinate system is usually not given 

explicitly, its origin, axes, and units being understood. 

A family of shapes can be defined by associating parameters or parametric 

expressions satisfying certain conditions with a limited number of points 

coincident with lines in a given shape. A particular member of this family is 

specified, by giving an assignment of real values to parameters that satisfies the 
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conditions. The result of applying an assignment g to a parameterized shape s 

is the shape denoted by g(s). 

A labeled point p:m is a point p with a symbol m associated with it. Two 

labeled points pr.mi and pr.mj are equivalent if and only if pi= pi and m\ is 

identical to mi- A transformation t of a labeled point p:m is the labeled point 

t(p):m, where t(p) is the image of p under ?. 

A labeled shape consists of a shape and an unordered set of labeled points. 

More precisely, a labeled shape a is given by the ordered pair a = <s, />, where 

s is a shape and / is an unordered set of labeled points. Labeled points in / may 

be coincident with lines in s, but this need not necessarily be the case. A labeled 

shape a = <s, l> is specified by drawing s in a Cartesian coordinate system and 

placing the labels in / next to the points with which they are associated. A shape 

s is the labeled shape <s, 0> , where 0 is an empty set. 

A labeled parameterized shape a is given by a = <s, />, where s is a 

parameterized shape and I is an unordered set of labeled parameterized points. 

An assignment g to the parameters in s and / specify a particular labeled shape 

g(o) =<g(s), g(l)> in the family of labeled shapes defined by a. 

A parametric shape grammar has five parts: (1) S is a finite set of shapes. (2) 

L is a finite set of unordered sets of labeled points. (3) R is a finite set of shape 

rules of the form A —* B, where A and B are labeled parameterized shapes, A = 

<u, i> and B = <v, j>. Any assignment g to the parameters in the 

parameterized shapes u and v, and the unordered sets of labeled parameterized 

points / and j , results in shapes g{u) and giy), that is in S*, and unordered sets of 

labeled points g(i) and g(j), that are in L+ and L* respectively. (4) / is a labeled 

shape such that / = <w, k>, where w is a shape in S , and k is an unordered set 

of labeled points in L+. The labeled shape, /, is called the initial shape. (5) T is 

a set of transformations. 

A shape is generated by a shape grammar by beginning with the initial shape 

/, and recursively applying the shape rules in the set R. A shape rule A —*• B 
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applies to a labeled shape C when there is an assignment g and a transformation 

t such that f[g(A)] c C. The result of applying the shape rule A —• B to the 

labeled shape C under g and £ is another labeled shape given by [C - f[g(A)]] u 

t[g(B)]. The shape generation process terminates when no shape rule in the set 

R can be applied. The language defined by a shape grammar is the set of shape 

s generated by the shape grammar, that is, labeled shapes of the form <s, 0>. 

The definition of standard shape grammars is obtained from the definition of 

parametric shape grammars by deleting part (5) and replacing part (3) with this 

statement: R is a finite set of shape rules of the form A —*• B, where A and B are 

labeled shapes. A shape rule A —> B applies to a labeled shape C when there is a 

Euclidean transformation t such that t(A) ^ C. The result of applying A —* B to 

C under t is the labeled shape [C - t(A)] u t(B). » 

This definition of shape grammars uses labeled points instead of markers, as 

opposed to SG-DEF-1971, SG-DEF-1974, and SG-DEF-1975. As explained in the 

Appendix of (Stiny, 1977), labeled points function in the same way as markers to 

guide the shape generation process; however, labels are invariant under the 

Euclidean transformations whereas markers are not. However, this distinction might 

be construed as overly simple, and depends on the design of shape rules. For 

example, in SG-DEF-1974, Gips employs certain geometrical characteristics, such as 

asymmetry, of the markers to control shape rule application. By replacing markers 

with labels, the only important geometry information is position. However, as most 

grammars do not rely on the geometric characteristics of markers or labels beyond 

their position, markers and labels, can be and are used interchangeably in this 

dissertation unless otherwise stated, for instance the phrases 'marker-driven' and 

iabel-driven' mean exactly the same thing. 

Knight provides an extensive discussion on the usage of labels (Knight, 1983). 

Labels in a shape rule normally supply additional information not provided by the 

shapes themselves, and indicate (1) how, (2) where, and (3) when a shape rule may 

applied to the design being generated. For case (1), labels specify under which 
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Euclidean transformations a rule can apply (usually by altering the symmetry). For 

case (2), labels specify to which subshape(s) in the design a shape rule can be 

applied. For case (3), labels are associated with the design instead of with any 

particular point(s). This last kind of labeling is most frequently used to indicate 

successive stages in the generation of a design. Here, labels serve as status markers, 

regulating the sequence and repetition of rule applications. For the first two cases, 

labels are spatial as their location is important. For the third case, labels are non-

spatial as their presence rather than location is more important. In this dissertation, I 

tend to call non-spatial labels as markers to distinguish them from the spatial labels, 

although, more often than not, both are used interchangeably, as discussed in last 

paragraph. 

SG-DEF-1980 

In 1980 Stiny published a paper (Stiny, 1980a) to explain the shape grammar 

formalism, where concepts of labeled shapes, and non-parametric and parametric 

shape grammars are elaborated. This version of the shape grammar definition (SG-

DEF-1980) has subsequently become standard, and is the most widely quoted. The 

following is a brief description, again using, as much as possible, Stiny's original 

language: 

« A shape is a limited arrangement of straight lines defined in a Cartesian 

coordinate system with real axes and an associated Euclidean metric. A shape is 

specified by maximal line representation. A shape is a subshape (part) of 

another shape whenever every line of the first shape is also a line of the second 

shape. A labeled shape consists of two parts: a shape and a set of labeled points. 

A parameterized shape is obtained by allowing the coordinates of the end 

points of the maximal lines in a given shape to be variables. A parameterized 

labeled shape <T is given by <7 = <s, P>, where s is a parameterized shape, and 

P is a finite set of labeled parameterized points. A labeled parameterized point 

is a labeled point/? where the coordinates of p are variables. 
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A shape grammar has four components: (1) 5 is a finite set of shapes; (2) L 

is a finite set of symbols; (3) R is a finite set of shape rules of the form A —* B, 

where A is a labeled shape in (S, L)+, and B is a labeled shape in (S, L) ; and 

(4) / is a labeled shape in (S, L)+ called the initial shape. 

In non-parametric shape grammars, a shape rule A —*• B applies to a labeled 

shape C when there is a transformation t such that t(A) is a subshape of C. The 

labeled shape produced by applying the shape rule A —> B to the labeled shape 

C under the transformation t is given by [C - t(A)] + t(B). 

Parametric shape grammars are extensions of non-parametric shape 

grammars in which shape rules are defined by filling the open terms (point 

variables) of a general schema. A shape rule schema A —• B comprises 

parameterized labeled shapes, A and B, where no member of the family of 

labeled shapes specified by A is the empty labeled shape. When specific values 

are given to the variables of A and B by an assignment g, to determine specific 

labeled shapes, a new shape rule g(A) —• g(B) is defined. This shape rule can 

then be used to change a given labeled shape into a new shape in the usual way. 

That is, shape rule application is expressed as [C - t(g(A))] + t(g(B)). » 

In comparison to SG-DEF-1975 and SG-DEF-1977, this definition is much 

more succinct and allows for more flexible shape rules. In SG-DEF-1975, markers 

are just shapes on different channels from the principal configuration. In SG-DEF-

1977, labels replace markers. In this definition, shape rules without symbols are 

supported; subshape matching drives shape rule application rather than markers or 

labels, whence, shape emergence becomes an important factor to be considered 

during shape rule application. While this allows new types of shape rules, there is a 

price to pay. Computationally, determining the applicability of shape rules as well as 

the corresponding transformations becomes much more complicated. Accordingly, in 

comparison to early definitions, this definition becomes less computation-friendly. 

Note that, in this definition, the allowable transformations can be restricted to 

special kinds, although this facility seldom features in the subsequent literature. The 
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restriction on the transformations in the case of the infinitely many ways of applying 

a shape rule, which appears in SG-DEF-1975, is not singled out here. 

The introduction of parametric shape grammars basically extends the scope of 

allowable transformations. While providing for more flexible and natural design of 

shape rules, function g for assigning parameters implicitly implies computational 

difficulty. Such functions are those allowing the points of a shape as variables (open 

terms) and the space of such functions is infinitely large. This means searching an 

infinite space. Indeed, Stiny states that devising an algorithm to find the 

transformations under which a parametric shape rule applies to a configuration is an 

open question (Stiny, 2006: pp 280). In terms of practical computer implementations, 

function g needs to be defined more specifically when designing a parametric shape 

grammar so that a case-based efficient algorithm can be devised. 

SG-DEF-1991 

An obvious deficiency of SG-DEF-1980 is the limitation on shapes requiring them to 

be composed of straight lines. Shapes, in general, are formed as arrangements of 

points, lines, planes, solids, and even exotic curves and surfaces. In (Stiny, 1991), 

Stiny generalizes the definition of SG-DEF-1980 in terms of shape algebras. 

"In a shape grammar, any pair of objects A and B defines a rule A —> B. The rule 

applies to an object C in a two-stage process involving a transformation t. The 

transformation is used in both stages, once with the relation < to distinguish 

some part of C, and then again with the operations + and - to replace the part 

that has been picked out." 

"Mathematically, if there is a t such that t(A) < C is satisfied, then an object is 

produced according to the formula of [C - t(A)] + t(B). t, <, +, and - are 

operators defined over a shape algebra, where t is a transformation function 

over a shape and can be generalized as a being alike function, < is a partial 

order relation in terms of subshape, and + and - are Boolean sum and 

difference. All these operators are applied recursively until reaching the basic 

elements, on which these operators are directly defined." 
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Under this definition, shapes are readily extensible. A shape can be 

simple —formed from basic elements of a single kind; or compound —a mix of 

various elements, optionally augmented in some way, for example, by colors. The 

only condition is that the operators of any shape algebra are defined on all its 

elementary objects, are recursively applicable, and are closed. In contrast to 

definition SG-DEF-1980, indeterminacy, that is, the infinitely many ways of 

applying a shape rule, is encouraged rather than restricted. While this causes little 

trouble for designers, indeterminacy is a tough issue for computer implementations. 

Additionally, shape emergence is regarded as a way of producing novel designs. 

SG-DEF-1992 

In the following year, Stiny formally extends the definition of shape grammars to 

include labels and weights, which he describes in algebraic terms (Stiny, 1992). 

Briefly, the algebra Uy contains shapes, each of which contains a finite but possibly 

empty set of basic elements that are maximal with respect to one another. Uy can be 

augmented with labels or weights to form, respectively, new algebras, Vy and Wy. 

Labels can classify shapes as collections, or introduce other additional information. 

Weights are properties of shapes, for example, the thickness of lines. The shape 

grammar formalism in algebras Uy is extended to algebras Vy and Wy without 

modification. With this background, we have the following definition for a shape 

grammar: 

"In the algebras Uy, Vy and Wy, and in the algebras formed by combining them, 

shape grammars contain rules that are followed to carry out computations with 

shapes. Rules are defined with shapes, and apply recursively to a given initial 

shape and then to shapes produced from shapes to determine a series of shapes 

that forms a computation. 

In exact detail, a rule A —• B establishes a relation between two shapes A and 

B. The rule applies to another shape C whenever there is a transformation t such 

that t(A) <x C. A new shape is then produced according to the formula 

[C -x t(A)] +xt(B). The shapes A, B, and C are taken from the algebra in which 
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the rule is defined; they may be individual shapes in £//,, V# or Wy, or, more 

generally, they may be compound shapes formed when theses algebras are 

combined. The part relation <x, and the operations of sum +x and difference -x 

also depend on the algebra in which the rule is defined. 

Schemata are sometimes used to extend these devices. A shape schema A(x) 

is a finite but possibly empty set of variables x that describes a family of shapes. 

If A(x) is empty, then a shape is given automatically. Otherwise, a function F 

assigns values to the variables that depend on the algebra in which A(x) is 

defined. 

Schemata are also used to define families of objects in Cartesian products, 

either families of compound shapes or families of rules in shape grammars. For 

example, any two shape schemata A(x) and B(x) — with or without shared 

variables — that describe shapes in the same algebra can be joined in a rule 

schema A(x) —* B(x). A function F assigns values to all of the variables in this 

schema, so that any required conditions are satisfied. And once the sets defined 

in this way are used to obtain shapes, as in the procedure for an algebra W,y, a 

rule is formed that may be applied in the manner established above. In effect, 

this allows for shapes and their relationships to vary within rules, and extends 

the transformations under which rules apply." 

SG-DEF-2006 

In his monograph, Shape: Talking about seeing and doing, Stiny discusses shape 

grammars in terms of drawing shapes and calculating by seeing. The historical 

analogy of shape grammars to phrase structure grammars is re-examined, with the 

conclusion that the analogy is inappropriate; it implies a lot more than it should. As a 

matter of fact, during the design process, a designer's vocabulary of shapes is 

typically not prescribed; instead, new types of shapes are defined on the fly. 

Noticeably, in this book, the definition of a shape grammar is never mentioned and 
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only alluded to informally, with the basic formalism remaining the same as SG-DEF-

1992. 

2.3 .4 Trends in the development of shape grammars 

From the above definitions, it is clear that the evolutionary development of shape 

grammars fall into two stages: marker-driven and subshape-driven. Definitions SG-

DEF-1971, SG-DEF-1974, SG-DEF-1975 and SG-DEF-1977 belong to the former 

category in the sense that shape grammars, so defined, are controlled by markers. It 

is the markers, which play a pivotal role in determining both the applicability of 

shape rules as well as their corresponding transformation. Markers can be designed 

in a way that the determination of applicability and transformation is relatively 

straightforward to compute. In later developments of shape grammars, markers 

evolve as alphanumeric symbols, which make determination even simpler (albeit 

while losing some power). All other definitions belong to the subshape-driven 

category, during which marker-driven (aka. label-driven) and subshape-driven rule 

application can coexist. In other words, the definitions support both marker-driven 

and subshape-driven shape grammars. In comparison to marker-driven shape 

grammars, there are harder computational issues involved with subshape-driven 

shape grammars, in particular, parametric subshape recognition and indeterminacy. 

Chronologically, the above definitions exhibit backwards compatibility. That is 

SG-DEF-1971 « [SG-DEF-1974, SG-DEF-1975] « SG-DEF-1977 « SG-DEF-

1980 « SG-DEF-1991 « SG-DEF-1992 « SG-DEF-2006, where the right side of 

« is more general than the left side. There is, however, a discrepancy between SG-

DEF-1974 and SG-DEF-1975, which were developed independently by the two 

principal authors of shape grammars, for very distinct research purposes, from the 

same root, SG-DEF-1971. 

The evolutionary development shows a trend from 'rigid' to 'soft'. 'Rigid' here 

means that the shape grammars are defined in a way that is closer to phrase structure 

grammars. Such shape grammars are more machine-bound in the sense that they are 

relatively easy to carry out (compute) on a computer, but harder to use to generate 
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novel designs. As a matter of fact, there is very limited novelty involved. On the 

other hand, 'soft' being more human-centered, shows more concern and 

consideration on how to use shape grammars to generate novel designs. This 

explains, in part, the importance of subshape-driven grammars, concepts of 

indeterminacy and shape emergence, and the support for ambiguity in shape 

grammar research. Humans have little trouble handling such concepts. Moreover, 

human designers actually benefit from them. However, these concepts are 

problematical when considering computer implementation. In other words, the 

earlier definitions are more computation-friendly and the latter ones are less. 

2.3.5 Shape grammars vs. phrase structure grammars 

It is hard to completely negate the connection between shape grammars and phrase 

structure grammars (aka. generative grammars), especially at the early stage of the 

development of shape grammars, although recent work shows that such analogy 

between them is inappropriate (Stiny, 2006). The connection is two-sided. On one 

hand, it does help in understanding the computational properties of shape grammars, 

for example, issues such as computing power, decidability, and computational 

complexity. On the other hand, the analogy may confuse computer scientists and 

mislead designers. 

For the computer scientist, one cause for the confusion lies in the dual role that 

shapes play. In some context, shapes may behave just like symbols; you can move 

them around, and rearrange them with different orientation and scale, but they do not 

interact with one another. In fact, a symbol is something atomic with a fixed shape. 

In computing terms, these can be represented by some fixed internal binary 

number(s). However, in other contexts, shapes may behave quite differently. For 

example, when two shapes are placed together in some arrangement, new shapes 

may emerge, visible to most designers (see Section 2.3.1). Moreover, as shown later, 

shape grammars can simulate Turing machines. Similarly, some well-known 

grammars in computer science such as string grammars, graph grammars, etc., can 

also be simulated by shape grammars. In this sense, shape grammars are 'super' to 

string grammars and graph grammars. Because of this, shape grammars may show 
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strong similarities to other grammars, for example, graph grammars, although their 

fundamental problems remain different and distinct (See Section 5.3.1). 

Designers distinguish themselves by their creativity, and generally do not 

believe rules can help them create novel designs. Drawing a close connection 

between shape grammars and the much 'drier' phrase structure grammars might 

make them feel even less convinced of the efficacy of grammars. 

Widely known as generative grammars, phrase structure grammars are an 

integral part of the theory of formal languages (Harry and Christos, 1997). Thus, any 

connection between shape grammars and phrase structure grammars can be extended 

to a connection between shape grammars and formal languages, so that theories of 

formal languages can be leveraged to understand the properties of shape grammars. 

Indeed, using definition SG-DEF-1975, Stiny has shown that shape grammars 

can simulate any Turing machines (Stiny, 1975). That is, shape grammars are at least 

as powerful as Turing machines. The conclusion is two-sided. On one hand, it shows 

that shape grammars are a powerful formalism. On the other hand, it shows that 

shape grammars share similar technical difficulties with Turing machines in terms of 

a computer implementation. For the latter reason, the simulation of a Turing machine 

is briefly outlined. 

In order to show that a shape grammar can be constructed to simulate any given 

Turing machine, it is essential to show five aspects. The following explains in detail 

each aspect as well as the corresponding simulation. 

(i) The states of a Turing machine can be encoded as shapes in reduced form, 

such that no two similar shapes represent distinct states. The set of shapes 

corresponding to the set of states of the Turing machine will form the main 

part of the set of markers for the constructed shape grammar. 

Consider a Turing machine with states given by the set K = {<?,• | 0 < / < n). 

Each state qt in K can be encoded uniquely by a triangle shape si with points 
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{{<0,1>,<1,1>}, { < 1 , 1 > , < — , 0 > } , {<0,1>, < ,0>}} where 0 < j ' < n . 

/ + 1 / + 1 

Notice that for states qi and qj, if qt * qj, then s,- is not similar to Sj. For the 

shape rules simulating transitions, the states serve as markers. Figure 2-12a 

shows an example of one such state. 

«),1> <1,1> <l/(i+l),2> 
\ / 
\ / 
\ / 
\ / 
\ / 
\ / 
\ / 
\ / 
s / 
\/ 

<l/(i+l), 0> 

(a) A shape encoding the state q. 

<0,1> <1,1> 

(b) A shape encoding the symbol a, 

<l/2,2> <4/3, 2> <5/2,2> <10/3,2> 

<0,1> <1, 1> <2,1> <3,1> 

(c) A shape encoding the tape 

<4, 1> 

< 1/2,2= <4/3. 2> <5/2,2> <10/3,2> 

<0, l> 

<3/2, 0> 

(d) A shape encoding a configuration 

<4, 1> 

Figure 2-12: A shape grammar for Turing machines 
Adapted from (Stiny, 1975) 
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(ii) The tape symbols, including the blank tape symbol, of a Turing machine can 

be encoded as shapes in reduced form such that no two similar shapes 

represent different tape symbols. The set of shapes corresponding to the set 

of tape symbols of the Turing machine form the main part of the set of 

terminals for the constructed shape grammar. 

The tape symbols can be defined in a way similar to state symbols. Let the 

Turing machine have the set of tape symbols £ = {«,-1 1 < / < m}. Let the 

blank symbol be given by OQ. Each symbol in the set, I u { o o } , can be 

uniquely encoded by a triangle with points in the set {{<0,1>, <1,1>}, 

{<1,1>,< , 2>}, {<0,1>, < 2>}} where 0<i<m. Figure 2-12b is an 
i +1 i +1 

example of such a symbol. 

(iii)Turing machine tapes and configurations can be represented by shape 

grammars. 

Consider the Turing machine tape a,0 ... aik where all symbols to the left of 

alQ and to the right of aik are the blank tape symbol ao. This tape can be 

presented by the shape ?,0 u transit)v 1) u ... u transitik, k), where transit, x) 

means translating shape t by x along the X-axis. Figure 2-12c is an example 

of such a tape. 

Now assume that the Turing machine is in state #, and is scanning the 

tape symbol a,, occurring in the tape a,0... a,.... alk. This configuration can 

be represented by the pair of shapes <T, transit, j)> where T is the shape 

representing the tape a,0 ... a,-.... a,r Figure 2-12d is an example of such a 

configuration. 

(iv)Turing machine transitions can be represented as shape rules. The set of 

shape rules corresponding to the set of transitions of the Turing machine 

form the main part of the set of shape rules for the constructed shape 

grammar. 
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A transition <qt, ay ay, qr, L>, which reflects a Turing machine in state g, 

scanning symbol ay replacing it by symbol ay, subsequently, going into state 

qr, and moving its tape one tape cell to the left, can be represented by the 

shape rule <ty st> —* < ty, trans (sr, 1)>. Figure 2-13 shows two shape rules, 

which simulate such transitions. 

(v) A Turing machine computation can be simulated as a derivation in the 

constructed shape grammar. 

With the above setup, it is easy to see that the constructed shape grammar 

simulates the computation of a Turing machine by derivation. 

<l/2,2> 

<l/2, 0> 

<l/2, 2> 

<0, 1> 

<2,1> 

<t,0> 

(a) 

<l./3, 2> 

<0,1> / <1,1> 

<0,0> 

<-1,l> 

<l/2, 2> 

' <0, 1> 

<-l/2, 0> 

(b) 

<1,1> 

Figure 2-13: Two shape rules simulating machine transitions 
Adapted from (Stiny, 1975) 
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The following results are direct extensions from the theory of formal languages 

(Harry and Christos, 1997). These results, which have an impact on computer 

implementation of shape grammars, have received no attention in the literature. 

For instance, it is well known that a Turing machine may not halt. Assume there 

is a computer program, which recursively applies the shape rules of a shape grammar 

until no shape rules can apply. As a result, this computer program will not halt for 

any shape grammar that simulates a non-halting Turing machine. In other words, 

shape grammars may not halt and an interpreter of shape grammars needs a way of 

handling such shape grammars. 

It is also known that a simulation of a non-deterministic Turing machine 

(abbreviated as NTM) with n steps by a deterministic Turing machine (abbreviated 

as DTM) requires exponentially many steps in n. Naturally, a shape grammar can be 

designed in a non-deterministic fashion, for example, the sports figure grammar 

(Carlson et al., 1991) (and also Figure 4-4). Thus, a shape grammar can be designed 

to simulate any NTM in a fashion similar to simulating a DTM. This is equivalent to 

the problem of simulating a NTM by a DTM; exploring the entire language of such a 

shape grammar might take an exponential number of steps, making exhaustive 

interpretation impractical. Therefore, the language space of a shape grammar can be 

exponentially large and a shape grammar interpreter has to devise a way of handling 

such cases. 

Lastly, another well-known theorem for unrestricted string grammars is that the 

membership problem — that is determining whether a string belongs to the language 

defined by a grammar or not — is undecidable. A shape grammar can be designed to 

simulate a string grammar in a similar manner to simulating a Turing machine. For 

such a shape grammar, the membership problem is equally undecidable — the proof, 

by contradiction, is trivial. In other words, in general, determining whether a 

configuration (aka. shape) belongs to the language defined by the shape grammar is 

unsolvable; that is, the problem of parsing a configuration against a shape grammar 

is unsolvable in general. Whether it is possible to restrict shape rules, to restriction 

categories similar to those defined for string grammars, for example, context-free 
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string grammars, is an open research problem, and is beyond the scope of this 

dissertation. 
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Chapter 3 Building feature 
extraction from image data 

The general approach developed for the AutoPILOT project assumes the availability 

of the exterior features of a building. There is a practical difficulty in this assumption, 

namely, that the geometry of an arbitrary target building is usually unknown, and 

time-consuming to generate. Automatic generation of building feature input is, of 

course, desirable. Recent progress in computer vision offers the promise to automate 

the generation procedure. In this chapter, related computer vision research is 

examined. In particular, two pipelines from processing image data to building 

features are compared: an ideal pipeline, based on the requirements of the 

AutoPILOT project, and a realistic pipeline, based, mainly, on the works of (Stamos, 

2001), (Frueh et al., 2004) and (Fulkerson et al., 2008). As in the AutoPILOT 

project, the particular focus here is on conventional building types, that is, buildings 

composed of rectilinear spaces and components, or approximated as such. Moreover, 

the goal of building feature extraction here is not a full-blown model; instead of, only 

those building features important for initial layout estimation are under consideration, 

for example, footprints, windows, doors, chimneys, etc. As a caution, the 

investigation here is purely theoretical; the implementation is left as a future research. 
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3.1 Photo images and range images 

Photo and range images are two types of image data commonly employed in 

computer vision research. Their basic characteristics are briefly reviewed below. 

3.1.1 Photo images 

Quite simply, a photo image records the world through color or brightness 

information, and photo-imaging systems have become cheaper and ubiquitous. 

Points are the basic units for describing the geometry of an object. Measuring points 

using photo images is the precise goal of traditional photogrammetry (Mikhail et al., 

2001). Modern computer technology relieves photogrammetry from reliance upon 

specific physical devices. 

The basic approach to measuring point coordinates is triangulation (Figure 3-1). 

By taking photographs from at least two different locations, 'lines of sight' are 

developed from each camera to points on the object. The lines of sight are 

mathematically intersected to produce the 3D coordinates. 

Figure 3-1: Measuring the 3D coordinates of points by triangulation 
(http://www.geodetic.conVWhatis.htm: accessed May 2009) 

This approach necessarily implies a sub-procedure, namely, that of establishing 

correspondences between pixels in different views. Automatic pixel matching is 
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difficult and costly; many solutions have been proposed, including the famous 

RANSAC algorithm (Fischler and Bolles, 1981). 

A major drawback is that photogrammetric measurements are inherently 

dimensionless. For instance, there is no way of distinguishing between pictures of 

full-sized cars and their matchbox models. Mathematically, an extracted model is 

correct to scale; for exact dimensions, we need, at least, one known measurement. As 

discussed later, compared to range images, photo images are relatively noiseless, 

although rectification and correction of radial distortion are often required. 

3.1.2 Range images 

Range images store the depth at which the ray associated with each pixel first 

intersects the scene as observed by a range sensor. A Cartesian transformation 

converts range pixels to points in space, resulting in a 3D point cloud. Range images 

are 'easier' in that the image data points explicitly represent scene surface geometry. 

The incident mesh is virtually ready for varying uses, for example, monitoring the 

progress of construct sites (Shih and Wang, 2004). However, to extract the geometry 

as basic shapes, such as lines, planes, cylinders, etc., most low-level problems that 

exist for photo images remain the same, such as filtering, segmentation, and edge 

detection (Paul, 1988). 

Range images are captured mainly using 3D laser scanners, which typically have 

limits on the view in terms of horizontal and vertical angles. To capture a given 

scene, multiple scans are required. These scans have to be further aligned, also 

known as registration, and optionally merged together, as each scan is represented in 

a local coordinate system relative to the laser scanner. Many algorithms had been 

proposed to automate the registration of a large number of individual scans; for 

instance, Huber and Hebert describe fully automated registration based on spin-

images (Huber and Hebert, 2001). 

Many laser scanners determine the range by measuring the shift in phase 

between an amplitude-modulated continuous-wave emitted beam and its reflection. 

This principle leads to two detrimental effects, namely range/intensity crosstalk 
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(Figure 3-2a) and mixed pixels (Figure 3-2b) (Herbert and Krotkov, 1992; Tang et al., 

2007). Range/intensity crosstalk is due to the fact that a range measurement is not 

independent of the reflective properties of the observed surface. The influence is so 

significant that useless range data can be produced. Mixed pixels happen when a 

laser beam partially hits the front surface and then hits another surface behind 

(Figure 3-2c). The fact that the range is measured by integrating over the entire 

projected spot leads to the result that the measured range can be anywhere along the 

line of sight. The implication is that occluding edges of scene objects are often 

unreliable. 

(a) Range/intensity (b) Mixed pixels (c) Formation of mixed 
crosstalk (adapted from (adapted from Tang et pixels 

Tang et al., 2007) al., 2007) 

Figure 3-2: Range/intensity crosstalk and mixed pixels 

Although there are algorithms that have been proposed to eliminate mixed pixels 

in special cases (Tuley et al., 2005; Tang et al., 2007), simple general cost-effective 

remedies do not seem to exist at the moment (Herbert and Krotkov, 1992). As a 

result, these two effects greatly reduce accuracy, down to centimeter from the 

advertised millimeter level. 
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3.2 An ideal pipeline 

The desired building feature input, for example, windows and doors, has to be given 

as typed objects, that is, the type and geometry of a particular object. Notably, we are 

able to distinguish between the geometry representing a window and that of a door. 

This requires that the object recognition algorithm is capable of both extracting 

object geometry, as well as annotating its type. 

Figure 3-3 shows an ideal pipeline based on the above discussion. The pipeline 

first builds a co-located model of range and photo images; that is, we know which 

pixel in the photo image corresponds to a point in 3D space. In the next step, 

geometries are extracted and photo images are automatically annotated. Each basic 

shape in the extracted geometries is typed by using the annotation of the 

corresponding pixels in the photo images. In this way, an annotated 3D model is 

created. The desired features of the model are outputted into an XML file, to serve as 

input to the layout determination program. 

Range images 

Photo images 

1 © 
J 

Geometry 
extraction 

6)* 
Co-located model 

> - ' / 
- < 

\ 

Annotation 

Geometries ~s 

/ T \ 

(£> 
Annotated pixels 

Annotated 3D model 

J 
Output into XML ( T ) 

Feature input 

Figure 3-3: An ideal pipeline 

3.3 State-of-art 

The ideal pipeline is related to both modeling-from-reality and appearance-based 

object recognition in computer vision research. The former aims at photorealistic 

reconstruction of scenes; the latter identifies the existence of an object in a given 

photo image, as well as its (rough) location. 
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3.3.1 Modeling-from-reality 

Modeling-from-reality is a challenging, but well-studied problem in computer vision. 

Mainstream techniques have been developed using photo images or range images or 

a combination of the two. Techniques for photorealistic reconstruction typically use 

both photo and range images. 

In the literature, image-based modeling refers to modeling from multiple photo 

images. The determination of object geometry from multiple views is not solely in 

the domain of computer vision; photogrammetry (Mikhail et al., 2001), which dates 

back to the mid-19th century, also attempts to precisely recover quantitative 

geometric information from multiple photo images. There are commercial software 

based on computer vision and photogrammetric technology. ImageModeler 

(http://usa.autodesk.com/adsk/servlet/index?id=11390028&siteID=123112: accessed 

May 2009) developed by Autodesk, and PhotoModeler developed by Eco System 

(http://www.photomodeler.com/index.htm: accessed May 2009) are among the two 

better known products. ImageModeler (Figure 3-4) relies on marker points specified 

by the user to calibrate camera position and parameters. Once calibrated, modeling is 

a manual procedure using polygonal primitives. Likewise, modeling in 

PhotoModeler (Figure 3-5) is mainly manual, although it can automate many sub-

procedures, such as, automated marking and matching. 
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Figure 3-4: An ImageModeler demonstration 

(http://usa.autodesk.com/adsk/servlet/index?siten>=123112&id=l 1983371: 
accessed May 2009) 

Figure 3-5: A PhotoModeler demonstration 
(http://www.photomodeler.com/applications/architecture and preservation/examples.htm: 

accessed May 2009) 
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There are models that directly use meshes incident with registered range images, 

for various objects, for example, statues (Levoy et al., 2000), heritage sites (Ikeuchi 

et al., 2003) and underground mines (Huber and Vandapel, 2006). The basic 

modeling procedure comprises capturing of range images, image alignment, merging 

range images into a mesh object, and optionally texture-mapping. As geometry 

information is given as meshes, this kind of technique does not meet our 

requirements. 

Without a priori knowledge of the type of the objects in a scene, it is generally 

hard to extract object surfaces from range images. This is because a range image 

treats an entire scene as an entity; thus, it is difficult to automatically determine 

which subset of points belongs to an object. Various techniques for geometry 

extraction have been developed. These fall into two categories: those that segment a 

point cloud based on such criteria as proximity of points or similarity of locally 

estimated surface normals, and those that directly estimate surface parameters by 

clustering and locating maxima in a parameter space. The former obtain the 

geometry as meshes, the latter, though, more robust, is only used for shapes that are 

described by a few parameters such as planes or cylinders. For our purpose, these 

latter methods provide more appropriate geometry. Examples include Faber and 

Fisher who use knowledge-based architectural models as constraints to build 

geometric models with the quality of CAD models (Faber and Fisher, 2002), and 

Vosselman et al. who explore techniques for recognizing objects as planes, cylinders 

or spheres in industrial plant and urban landscape contexts (Vosselman et al., 2004). 
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(a) 2D photo image of the scene (b) Range image of the scene 

(c) Extracted 3D lines (d) 3D lines projected on the photo 
image 

Figure 3-6: Photorealistic scene reconstruction 
Adapted from (Stamos and Allen, 2002) 

Stamos and Allen develop a systematic approach to the problem of 

photorealistic 3D model acquisition from a combination of range and photo images 

(Stamos and Allen, 2002). Their approach utilizes parallel and orthogonal constraints, 

which abound in urban environments. As a result, this approach works well on urban 

scenes consisting of conventional buildings. The system takes a set of 3D range 

images from different viewpoints and a set of 2D photo images of the scene, creating 

first a 3D solid model, which describes the geometry of the scene, then recovering 

the positions of the 2D cameras with respect to the 3D model, and finally, photo-

realistically rendering the scene by texture-mapping the associated photographs on 

the model. Figure 3-6 shows results. 
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3.3.2 Appearance-based object recognition 

Appearance-based object recognition can be used to annotate objects. With a co-

located model, we can determine the object type of the extracted geometry by 

detecting the object type to which the corresponding pixels belong. 

Appearance-based object recognition is still active research. The earliest work 

utilized global descriptions such as color or texture histograms. The main drawback 

to this was sensitivity to real world variability, such as viewpoint and light changes, 

clutter and occlusion. Global methods have been gradually supplanted by part-based 

methods in the last decade. Part-based object models combine appearance descriptors 

of local features with a representation of their spatial relations. While part-based 

models offer a satisfying way to representing many real-world objects, learning and 

inference problems for spatial relations remain complex and computationally 

intensive, especially in a weakly supervised setting where the location of the object 

in a training image has not been marked by hand. The bag-of-features model (Csurka 

et al., 2004) has the advantage of simplicity and computational efficiency, though it 

fails to represent the geometric structure of the object class. Various approaches have 

been developed to overcome this; examples are SIFT descriptors (Sivic et al., 2005), 

novel kernels (Zhang et al., 2007), etc. Overall, the current techniques are still far 

from being capable of recognizing object types of an image on the level of pixels; 

instead, only the rough position can be determined. This makes it difficult to 

accurately determine the object types of extracted geometry elements. 

3.4 A realistic pipeline 

Using commercial software such as ImageModeler and PhotoModeler offers a 

practical option. Photo images at different angles are input to such software, with a 

3D annotated model manually created, and the desired building features then output 

to XML. This approach is, however, time-consuming, as there is limited automation 

involved. 

On the other hand, the technique, developed by (Stamos and Allen, 2002) in 

reconstructing photorealistic texted 3D model, can be fully automated. However, for 
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our purposes, there are potential problems. For instance, there is no way of 

guaranteeing that the desired geometry information can be extracted; moreover, it is 

unlikely that the photo-image pixels are correctly annotated. The extracted geometry 

is typically loosely connected—it would be hard to automatically convert such 

geometry information to annotated objects even if annotations were available. 

Consequently, it demands manual operations. However, on the motto that there is 

presently nothing better, a pipeline based on this technique is still preferable to the 

manual approach; at least, there is some automation involved. Accordingly, one such 

pipeline is chosen as the realistic pipeline (Figure 3-7). Note that the textured 3D 

model also serves as a co-located model. 

Range images 
© 

Photo images 

Edges 
© 

Registration 

©̂  
Edges 

Co-located model 

Annotated pixels 

© 
> • 

Manual 

Output into XML 

Annotated 3D model 

© 

Feature input 

Figure 3-7: A realistic pipeline 

3.5 Details of the realistic pipeline 

The realistic pipeline is designed to generate building features as automated as 

possible. The automated part is based mainly on the works of (Stamos, 2001), (Frueh 

et al., 2004) and (Fulkerson et al., 2008), including i) edge extraction of range 

images, ii) registration of range images using the extracted edges, iii) edge extraction 

and annotation of photo images, and iv) creation of a co-located model by aligning 

photo images to range images. The manual part includes filling the missing 

geometries and constructing objects with the help of the annotation information. A 
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system similar to AutoDesk's ImageModeler will greatly assist the manual tasks. 

Algorithms for the automated part are detailed in the sequel. 

3.5.1 Edge extraction of range images 

Straight-line edges are fundamental to the geometry of conventional buildings. 

However, as discussed early, occluding edges in range images are often unreliable 

due to mixed pixels. This makes direct edge extraction impractical. On the other 

hand, a fitted plane feature is less sensitive to such noises, as it reflects the votes of a 

large number of points. Taking advantage of this fact, an edge can, instead, be 

computed by intersecting its two adjacent planes. 

Plane extraction via segmentation 

The plane measured by a set of points {p\, ... pn) can be computed through matrix 

A= V ((/? - p)T • (p.- - p ) ) , where p is the centroid of points {pi, ... pn) and a 

point on the plane. The normal of the plane is the smallest eigenvector of A. The 

smallest eigenvalue d measures the quality of the fit (least squared deviation). 

In reality, however, the mapping of a range point and the plane it measures is 

usually unknown. The process to determine such a mapping is known as 

segmentation. Informally, segmentation is of labelling all the points in a range image, 

so that points whose measurements are of the same surface are given the same label. 

For our purpose, the only type of surface concerned is plane. 

A number of different segmentation algorithms have been developed (Hoover et 

al., 1996; Han et al., 2004) and, surprisingly, segmentation remains an active 

research. As suggested by the experiment conducted by (Hoover et al., 1996), it is 

hardly to distinguish a perfect one. Here, we examine the one adopted in (Stamos, 

2001), which is a process of iteratively region growing by taking advantage of the 8-

neighbourhood connectivity incident with a range image. 

The laser beams emitted by 3D laser scanners typically follow a fixed pattern, 

vertically emanating laser beams incremented by a constant angle a, horizontally 
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rotating a constant angle /?, and then vertically emanating another column. 

Conceptually, the laser beams can be indexed on a 2D rectangular grid (Figure 3-8). 

This leads to a mathematical representation of a range image as a set {r(i,j), 

i =1 ... N, j = 1 ... M}, where r{i,j) is a range pixel. Neighborhood connectivity 

relationships can be easily defined on the 2D grid, for example, 8-neighborhood 

connectivity. Moreover, the connectivity relationships are the exact same for the 

corresponding 3D points in space, assuming these points are on the same plane. 

• 
Column (i) 

Figure 3-8: Grid pattern of laser beams and 8-neighborhood connectivity 
Adapted from (Stamos, 2001) 

Formally, segmentation is to divide a range image {r(i,j), i=\ ... N,j = 1 ... M} 

into a set of clusters {Cmu, C\, ... , C„}, such that i) LJ {Cnuii, C\, ... , C„} 

is the entire range image, ii) no two clusters overlap, iii) each cluster Q, i > 1, 

contains points of a connected planar region with area larger than TminArea, a user-

defined threshold representing the minimum area of the desired building components, 

and, iv) the special cluster Cnuu contains points which cannot be classified to any 

planar region. 

The segmentation algorithm first attempts to fit a local planar patch on the k x k 

neighborhood of every 3D point. The fit can be either acceptable or inacceptable, 

Row(j) 
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which is guarded by the smallest eigenvalue d of the corresponding matrix A 

constructed. The fit is inacceptable when d is larger than a threshold value dfit, 

meaning that the k x k neighbor is not on a plane. dflt should be small and on the 

order of the square of the expected noise level (Siciliano and Khatib, 2008). The 

point with unacceptable fit is put in the cluster Cnuu-

A list of clusters is initialized, by creating a cluster for each point with 

acceptable fit. This initial list is iteratively merged by the metrics of conormality and 

coplanarity. Two adjacent local planar patches, (p\, n\) and {p%, n%), are considered as 

conormal when the angle a = c o s ^ n i ^ ) is smaller than a threshold OLmerge, and 

) is smaller than a coplanar when the distance dist = max ( pip1nx PiPi'ih 

threshold value distmerge. 

The merging process stops when the list of clusters becomes stable; that is, no 

two clusters can be further merged. A plane is fitted to each stable cluster. The 

boundaries of each plane are also extracted. Typically, each plane has an outer 

boundary and potentially multiple inner boundaries (for example, a wall surface with 

window openings). A point is on the boundary if at least one of its 8-neighbors is not 

in the cluster. 

The above cluster merging process can be efficiently implemented by visiting 

each acceptable fit in a raster-scan manner along the range image grid and by 

maintaining a cluster equivalence table. For acceptable fit of (/, j), the acceptable fits 

at (1+1,7), (i,j+l), and (i+l,j+l) are tested and labeled. The real merging happens in 

another run of the raster scan. This implementation has complexity O(N) where N is 

the total number of range points. 

Edae extraction 

The parameters of a dihedral edge (Figure 3-9a) with two known adjacent planes, 

(pi, «i) and (p2, ni), can be computed in two steps: firstly computing the incident 

infinite line /, and then determining its endpoints. An infinite line / is specified by a 

point and its direction vector. The direction vector is given by n\ x m. A solution po 
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of 
T 

nx 
T 

[n2\ 

P = "lPi 

A. Pi. 
is a point on /. The endpoints can be bounded by point projection 

(Figure 3-9b). The points of the corresponding clusters of the two adjacent planes, 

whose distances to / are less than a threshold value dedge, are projected on the line. 

The line segment bounded is the final result. 

(a) Infinite dihedral edge 

(b) Bounding die endpoints of die (c) Distances of die boundaries and die 
infinite dihedral edge infinite dihedral edge 

Figure 3-9: Extraction of dihedral edges 
Adapted from (Stamos, 2001) 

In reality, which two planar regions form a dihedral edge is usually unknown. 

The following is a process to determine such pairs of planar regions: Pairs of planar 

regions whose bounding boxes are close to each other (under threshold db0und) are 

first chosen. The dihedral infinite lines are then computed. To filter out factious 

candidates, a distance criterion is used. The distance is defined as the 2D minimum 

distance of a finite line and every 'smaller' edge of the 'used' boundaries of the 
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adjacent planar regions. This distance can be computed fast by an algorithm 

described in (Lumelsky, 1985). Pairs, whose have a distance larger than a threshold 

dbound, are discarded (Figure 3-9c). 

Mixed pixels have the potential to influence accuracy of the endpoints. For 

example, there may be mixed pixels on surface Sj near the lower-left corner (see 

Figure 3-10). The boundary used to constrain the endpoint will be influenced by 

those mixed pixels. 

Window 

A 
* 

s, 

—. 
Bottom edge ^ Lower-left corner 

•' Laser beam 

Figure 3-10: Potential endpoint inaccuracy caused by mixed pixels. 

3.5.2 Registration of range images 

Essentially, registration of range images involves computing the transformation 

matrix, including a rotation matrix and a translation vector, between two range 

images. The extracted dihedral edges can be employed to determine the 

transformation matrix. There are two options to constructing the equations: either 

using three pairs of non-parallel infinite lines incident with edges, or using three 

pairs of edge endpoints. 

Between these two options, we may be tempted to use infinite lines, since mixed 

pixels potentially impact the accuracy of the endpoints. However, it may be 

impossible to find such pairs due to the way edges are extracted. For example, as 

shown in Figure 3-11, all the vertical dihedral edges in Scanl is either occluded or 

become non-dihedral in Scan2, with only horizontal edges left as candidates. As a 
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result, in general, edge endpoints have to be employed when computing the 

transformation matrix. 

t-
Scan 1 Scan 2 Scan 1 Scan 2 

Figure 3-11: Difficulty of registration by infinite lines 

Following the above argument, a RANSAC algorithm on three pairs of edge 

endpoints can be used to determine the transformation matrix between two range 

images, with a rating equation similar to the one to be described in Section 3.5.4—a 

candidate transformation matrix is determined by the randomly selected three pairs 

of edge endpoints, the extracted edges in one range image corresponds to the 2D line 

segments found in the image, the extracted edges of another under the candidate 

transformation matrix corresponds to the projection of 3D line segments, and the 

desired transformation matrix is found when the rating equation achieve a maximum 

value. 

3.5.3 Edge extraction and annotation of photo images 

Edges of photo images are required in creating a co-located model. The following 

describes the algorithm to extract edges: 

1) Apply Canny edge detector (Canny, 1986) with hysteresis thresholding. The 

results are chains of 2D edges, one pixel each in size. Figure 3-12 shows the 

edges obtained by applying the Canny edge detector implemented by Tom 

Gibara (http://www.tomgibara.com/computer-vision/canny-edge-detector: 

accessed July 2009) on the picture of Figure 1-5. 
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2) Segment each chain into linear parts. Here, an algorithm similar to the one 

described in (Lowe, 1987) is adopted. Each chain is recursively subdivided at 

the point with maximum deviation from a line connecting its endpoints 

(Figure 3-13a, b). This process is repeated until each sub-chain is no greater 

than a threshold /m,„ in length, or the least square deviation of its points is no 

greater than a threshold devmax-

3) Fit and compute the parameters of the line segment for each sub-chain 

(Figure 3-13c). Merge two collinear line segments if the minimum distance 

of endpoints is less than a threshold value dm,„. 

Figure 3-12: Edges detected from the picture in Figure 1-5 using a Canny edge detector 
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K, 
(a) (b) 

Figure 3-13: Subdividing a chain recursively, and extracting its straight-line segments 
Adapted from (Lowe, 1987) 

Automatic annotation of photo images is still active research. In the realistic 

pipeline, the results returned by annotation just serve as hints. The approach 

developed in (Fulkerson et al., 2008) is adopted. It uses bag-of-features as a 'black 

box' to perform pixel-level category recognition. There are three key developments 

making this brute-force way feasible: reducing the size of a large generic dictionary 

to low hundreds; extending the concept of integral images to the computation of 

local histograms; and computing SIFT descriptor densely in linear time. See 

(Fulkerson et al., 2008) for further details. 

3.5.4 Creating a co-located model 

The creation of a co-located model is to align each photo image with the range image 

model so that the particular pixel corresponding to a 3D point in space can be 

determined. Essentially, this is the problem of camera pose determination; that is, 

determining the camera projection matrix. 

Ignoring lens distortion, the general camera projection matrix M is a 3 x 4 

matrix with 6 extrinsic and 5 intrinsic parameters. When three exact-matching pairs 

of 3D and 2D straight-line segments are known, all the 11 unknown parameters can 

be recovered by minimizing \Lm |2 = mTLTLm, subject to | m | = 1, where 
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In practice, however, exact matching is seldom known. On the other hand, it is 

reasonable to assume that the 3D and 2D images significantly overlap. If an initial 

pose estimate were known, we could rate a given pose by projecting the 3D lines 

onto the target image and comparing against the 2D lines extracted from the image. 

This rating is a non-linear minimizing process. 

Here we adopt a rating equation based on slope and proximity, which is 

proposed in (Frueh et al., 2004): 

^M x->w 
Qpose— ZJI=QZJJ=Q S(lhLj)-DilhLj). 

•th 
U is the / 2D line segment found in the image. Lj is the 2D projection of the j 3D 

line segment. ||/,|| is the length of the ith 2D line segment found in the image. 

Sili, Lj) is a function of the slopes of lines /, and L, such that 

(''';')=1(W /-(/,L,)>S_' 

where (lnL,S is the dot product of the normals of /, and Lf, Smax is a threshold value. 

D(liy Lj) is a function of the proximity of lines /, and Lj such that 

0 for d(li,Lj)<D„ 

D(li,Lj)=\pmax-d(li,Lj) 
'max 

D„ 
for d(li,Lj)^D„ 

where d{k, Lj) is the sum of the minimum distance of the endpoints of lines /, and Lf, 

Dmax is a threshold value. 
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The rating equation is designed to achieve a maximum value when both slope 

and position of the projected 3D model lines best match the 2D image lines. To 

compute exact camera pose, Qpose needs to be optimized over the 11 dimensional 

parameter space. 

Initial camera pose estimation 

The initial camera pose can be obtained from GPS (Global Position System) or INS 

(Inertia Measurement System). This needs the relative position of the range sensor 

and the camera sensor to be rigidly fixed. 

The algorithm designed by (Stamos, 2001) removes the above restriction. In 

particular, it can estimate the rotation, translation, focal length, and principle points 

of a camera. Note that for a general camera project matrix, 90° is a good initial 

estimate for the camera axis skew, and 1 for the axes scales between world and 

image coordinates. Putting this all together, the initial camera position estimate is 

complete. The following describes Stamos's algorithm in details: 

Let F3D and F2D be the 3D and 2D line segments extracted from the range and 

image data. 

1) Group the 3D and 2D line segments into clusters of parallel 3D lines ZgD 

and converging 2D lines I^Q (intersecting at vanishing points). 

In a building environment, the number of vanishing points is almost always 3 

(may be at infinity). Vanishing points can be determined, by first computing 

all pair-wise intersections of F2D, then constructing a 2D histogram of the 

intersection points, and lastly, extracting the first three peak values. With 

vanishing points, F2D can be clustered into Lao = {LQ.D\, Lam, £203} by point-

on-line testing. Figure 3-15b shows a sample result. Note that constructing 

such a 2D histogram can be a subtle task, for example a vanishing point can 

be at infinity. Related issues have been widely examined in computer vision 

research, with common solutions employing a Gaussian sphere or applying 
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the Hough transformation. See (Shufelt, 1999; Rother, 2002) for further 

details. 

An iterative merging process clusters the 3D lines. Initially, each 3D line 

defines its own cluster. Based on similarity between the average angles of 

the lines contained in a cluster, the two most similar clusters are merged. This 

process is repeated until only three clusters are left. At the end, F3D are 

clustered into three groups of parallel lines LJD = {£301, £302, £303}, along 

with the average direction of each cluster UJ,D = {U3D1, U-im, ^303}- Figure 

3-15a shows a sample result. 

2) Estimate the focal length, principle point, and rotation matrix. 

As a fact, vanishing points and the center of projection of the camera form a 

proper tetrahedron if and only if the three scene line directions are orthogonal 

with respect to each other (Becker, 1997). Thus three vanishing points 

computed previously can be used to calculate the center of projection of the 

camera, whence the focal length and principle point (Figure 3-14). 

Knowing the center of the projection CoP, the line segments of connecting 

CoP and three vanishing points are the directions of the three orthogonal axes 

in the camera coordinate system. Together with the three orthogonal axes 

directions in the coordinate system of 3D range images, the rotation matrix 

can be computed (Figure 3-14). 
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Center of projection 

Image plane 

Directions of 3 
orthogonal sets of 
parallel scene lines 

VP: Vanishing Points 

Figure 3-14: Calculating the projection center by using three vanishing points 
Adapted from (Stamos, 2001) 

3) Estimate the translation. 

Theoretically, executing the RANSAC algorithm directly on the extracted 

edge features can compute translations, but the search space will be 

combinatorially explosive. To reduce search space and increase rate of valid 

matches, 3D and 2D lines can be further grouped into 3D and 2D rectangle-

shapes. To extract 2D rectangles from photo images, quadrangles are first 

found, and then the perspective effect is cancelled by projecting back into the 

world coordinate systems. Extraction of 3D rectangles involves checking for 

the coplanarity of the border line segments. See (Stamos, 2001) for details of 

the grouping procedure. After grouping, the RANSAC algorithm can run on 

these 'high-level' rectangle features to compute translation. Figure 3-15a 

shows the 3D rectangles extracted from a range image, Figure 3-15c shows 

the 2D rectangles extracted from a photo image, and Figure 3-15d shows the 

match of some 3D and 2D rectangles. 
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(a) Clusters of 3D lines (color encodes different (b) A photo image and clusters of 2D lines 
directions) and extracted 3D rectangles extracted (color encodes different directions) 
(rendered as solids of different colors) 

(c) Extracted rectangles in the photo image (d) Extracted rectangles in the photo image and 
matched 3D rectangles projected on the photo 

image under the estimated camera pose 

Figure 3-15: Results of initial camera pose estimation 
Adapted from (Stamos, 2001) 

3.6 Remarks 

Although significant progress has been made in computer vision research, there is 

still a noticeable gap between the ideal and reality. Commercial software developed 

speed up manual generation of building feature input. State-of-art research partially 

automates manual tasks, while leaving much to be desired. 

Existing approaches on scene reconstruction are still mainly purely geometry-

based, with little concern to the specific type of the underlying object, without 
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knowledge of which, makes extraction of complete geometry extremely difficult. To 

know the object type, it is necessary to improve current object recognition algorithms 

so that object types are accurately identified. This seems to be a kind of chicken-and-

egg situation. However, this cycle can be broken, with some promise, by using a 

combination of range and photo images, the former primarily for geometry and the 

latter for annotation. 
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Chapter 4 Computation-
friendly shape grammars 

It was shown in Section 2.3.5 that any Turing machine can be simulated by a shape 

grammar, and that, as a computing model, shape grammars are at least as powerful as 

Turing machines. Moreover, shape grammars share some of the same computing 

difficulties as Turing machines, including that a shape grammar may not halt, the 

language space of a shape grammar may be exponentially large, and the membership 

problem is unsolvable in general. These provide formal evidence for the awareness 

that implementing a shape grammar interpreter is difficult, in particular for 

parametric shape grammars (Gips, 1999; Chau et al., 2004); shape grammars are 

subject to ambiguity, combinatorial explosion and indefinite emergent possibilities, 

which make certain computation intractable (Chase, 1997). 

On the other hand, it is known that in practice, many shape grammars are 

implementable. As a result, it would be advantageous to examine the tractability of 

shape grammars in a way that determinant factors can be identified and whence, 

serve as a guide to avoiding those intractable cases. Formally, problems are deemed 

tractable whenever there is a polynomial algorithm, and intractable when they 

require super-polynomial time. 
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The approach used to trace down the determinant factors of the tractability of 

shape grammars is based on the observation that interpreting a shape grammar is 

through the application of its shape rules. A shape grammar contains a finite set of 

shape rules. This fact underlies the fundamental basis for a shape grammar, namely, 

that of using a small number of shape rules to realize many, potential infinitely many, 

design possibilities (Stiny, 2006). According to the number of steps of applying 

shape rules at the time of termination, shape grammars can be divided into two 

categories: those need super-polynomial steps or even infinitely many, and those 

need polynomial steps. The former becomes intractable automatically. For the latter, 

the tractability is actually determined by the application of each shape rule. 

In this chapter, factors influencing tractability are identified by exploring the 

formalism for shape rule application. The existence of both tractable and intractable 

shape rules, together with other computation difficulties mentioned at the beginning 

of this chapter, negates the possibility of a single general shape grammar interpreter. 

Instead, I propose a paradigm for a practical, 'general' interpretation of shape 

grammars, comprising a collection of sub-interpreters, one for each class of tractable 

shape grammars. Then, an optimal way to classifying shape grammars is discussed, 

with the conclusion that classification is reliant upon the underlying data structure. 

There are other, mainly external, factors that influence computability of extant 

shape grammars, which can be resolved by recasting—in essence, codifying—their 

shape rules. That is, pragmatically, the paradigm is augmented to comprise a set of 

sub-frameworks; each, in actuality, is an application programming interface (API) 

built on top of an underlying data structure, a basic set of manipulation algorithms, 

and a meta-language. 

4.1 Parametric subshape recognition 

Parametric subshape recognition, a central step to the application of any parametric 

shape grammars, is known to be difficult. In this section, I will use the problem of 

parametric subshape recognition of two-dimensional rectilinear shape to show the 
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potential computational difficulty. The discussion is based on the shape grammar 

definition of SG-DEF-1980 (see Section 2.3.3 for details). 

For non-parametric subshape recognition of two-dimensional rectilinear shapes, 

the transformation t can be determined by matching three distinguishable points of A 

to three distinguishable points of C (Krishnamurti, 1981). However, for parametric 

subshape recognition, this is not necessarily the case. 

It is possible that a parametric shape A has a certain number of fixed points 

(non-open terms). If there are more than three fixed points (distinguishable by 

definition), the above 3-point algorithm is still applicable, with 

test against. 

( \ 
n 

possibilities to 

For shapes with 1 or 2 fixed points, this is identical to the situation when all 

points are open as similarity is subsumed by the assignment. When all points are 

open, the shape transformation may not be describable by a homogeneous 

transformation matrix. For example, Figure 4-la matches Figure 4-lb under a 

parametric shape rule, but there is no 3 x 3 homogeneous matrix which describes the 

transformation. As a result, open terms have to be determined, point-by-point, for 

each candidate subshape in C. 

(a) (b) 

Figure 4-1: Example of parametric subshape matching 

In general, when there are k open terms, there are 
( \ n 

k) 
possibilities. Even 

assuming that testing against each possibility costs unit time (typically, this is much 
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more expensive in reality), when k is close to nil, the time complexity is a high-

degree polynomial or even super-polynomial. To give a concrete example, the 

possible number of tests is 7.5xl07 when £=5, n=100; 1.7xl013 when £=10, n=100; 

and l.OxlO29 when £=50, n=100. It takes a computer, with performance of 

thousands of millions of instructions per second, several minutes to test all the 

possibilities when £=10, n=100. Note that when k is more than nil, the number of 

possible tests begins to decrease. 

4.2 Determination of factors influencing tractability 

The analysis of factors influencing tractability is preferred to be general; that is, it is 

applicable to different kinds of shape grammars. For such an analysis, it is necessary 

to have a general definition of shape grammars, which covers all known types of 

shape grammars and, preferably, the new types in the future. 

4.2.1 A unified definition of shape grammars 

As reviewed in Section 2.3.3, the development of shape grammars is evolutionary, 

while the basic formalism remains the same. The only factor actively evolving is the 

scope of the allowable basic shape elements as well as various augmentations. 

Initially, the focus is two-dimensional shapes, which are made out of a finite 

straight lines in terms of maximal representation (Stiny, 1980a). Already, in the 

kindergarten grammar (Stiny, 1980b), the basic shapes were essentially three-

dimensional rectilinear solids, albeit drawn as line shapes. In another paper, Stiny 

states that shapes made up of points, lines, planes, or solids provide the main objects 

for shape grammars (Stiny, 1991). Krishnamurti examined shape arithmetic for 

shapes made up of finite planes (Krishnamurti, 1992a) and considered subshape 

recognition for three-dimensional shapes under linear transformations (Krishnamurti 

and Earl, 1992). Along with Stouffs, he extended the arithmetic to higher-

dimensional shape algebras (Krishnamurti and Stouffs, 2004), described algorithms 

for three-dimensional shape arithmetic and analyzed their computational complexity 

(Stouffs and Krishnamurti, 2006) and considered subshape recognition over the 

Cartesian products of differently dimensioned shapes (Krishnamurti and Stouffs, 
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1997). A three-dimensional shape grammar implementation based on a commercial 

solid modeling kernel is described by (Piazzalunga and Fitzhorn, 1998), and 

grammars over curves have been considered by several authors (Chau, 2002; 

McCormack and Cagan, 2003; Jowers et al., 2004; Prats et al., 2004). 

Geometric shapes can be augmented by symbols, numbers, attributes, in general, 

weights (Stiny, 1992), in this way, connecting shapes of various kinds (Stiny, 1991). 

Shapes so augmented can be further extended, by using the schemata so that a family 

of such shapes can be defined. A shape schema A(x) is a finite but possibly empty set 

of variables, for example, the coordinates of points, that describes a family of shapes. 

If x is empty, then a shape is given automatically. Otherwise, a shape can be 'fixed' 

by using a function g to assigns values to variables x as g[A(x)]. Shape grammar with 

schemata is historically called parametric shape grammars. To distinguish, shape 

grammars without schemata is called non-parametric shape grammars. 

Traditionally, the non-parametric shape grammars formalism is defined as: for a 

shape rule A —*• B and a configuration C, if t(A) < C, then the result of applying the 

shape rule on C is [C - t(A)] + t(B), where t is a transformation of similarity, < is a 

part relation, - is the operation of Boolean difference, and + is the operation of 

Boolean sum. Note that, the operations of Boolean sum and difference implicitly 

involve an operation of reduction R (See SG-DEF-1975 of Section 2.3.3), which is 

used to maintain the maximal representation (Krishnamurti, 1992b). 

For parametric shape grammars, the formalism is defined as: for a shape rule 

schema A(x) —> B(x) and a configuration C, if ?[g(A(;c))] < C, then the result of 

applying the shape rule on C is [C - f[g(A(x))]] + t[g(B(x))], where g is a function 

which makes an assignment to the open terms (aka. variables) of the schema. 

Since t can be generalized as a being-alike function (Stiny, 1991), the function g 

can be combined with, thus subsumed by, t to form a new being-alike function. In 

this way, the formalisms of non-parametric and parametric shape grammars are 

unified. By explicitly pulling the reduction operation R as the last step of applying a 

shape rule, the general formalism for all shape grammars becomes: 
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For a shape rule A —*• B and a configuration C, if t(A) < C, then the result of 

applying the shape rule on C is R[[C - t(A)] + t(B)], where t is a being-alike 

function, < is apart relation, - is the operation of Boolean difference, + is the 

operation of Boolean sum, and R is the reduction operation to maintain a 

maximal representation. 

In the following discussion, the above definition is used as the general definition 

of shape grammars. Following this definition, the scope of basic shape elements can 

be extended arbitrarily, such as lines, curves, labels, weights, whatsoever; the bottom 

line is that all operators of t, <, - , +, and R are well defined. In particular, elements 

are implicitly typed in a way that operators of <, - , +, and R only operates on two 

elements of the same type (that is, co-equal); For example, for two line segments, 

these operators are only meaningful when two has the same slope. 

4.2.2 Factors influencing tractability 

For those halting shape grammars with a polynomial language space, there are at 

most polynomial steps of shape rule application. For such shape grammars, the 

tractability is actually determined by the application of each shape rule. By definition 

(of shape grammars), application of a shape rule involves the operations of t, - , +, <, 

and R on elementary objects. If any of these operations takes super-polynomial time 

or even undecidable, shape rule application becomes intractable. In everyday design 

practice, the computational complexity of these operations may seem trivial, as these 

operations are not so difficult for rectilinear shapes. As concluded in (Stouffs and 

Krishnamurti, 1993; Stouffs and Krishnamurti, 2006), the asymptotic upper bounds 

of comparing two co-equal spatial elements, the fundamental operations of- and +, 

with maximum boundary size n is polynomial for elements in a d-dimensional space, 

0 < d < 3. In particular, for d = 0 and 1, the upper bound is a constant; for d = 2, it is 

0((m+n) log n), with m = 0(n2); and for d = 3, <2>((Km + kn) log n), with K = 0(k), k = 

0(ri) and m = 0(n2). 

However, for certain kinds of shape objects, some of these operations can be 

difficult, even intractable. An example is the Boolean operation on two solids with 
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rational curved surfaces, which involves rinding the intersection of two rational 

surfaces. The intersection of two smooth surfaces is one of the following: i) empty; 

ii) a collection of points; iii) a collection of smooth curves; iv) a collection of smooth 

surfaces; or, v) any combination of ii), iii), and iv) (Barnhill et al., 1987). 

Traditionally, analytical approaches by variable elimination have been the means to 

solving this kind of intersection problem. However, the degree of the resulting 

polynomial can be too high to solve. For instance, two generic bicubic patches can 

intersect in a curve of degree 324. Moreover, it has been shown that the intersection 

curves cannot be exactly represented by parametric equations even of degree 324 

(Katz and Sederberg, 1988). Therefore, numerical methods have to be used and only 

curves under certain approximations are obtained. Although surface-to-surface 

intersection is still an active area of research (Patrikalakis et al., 2004; Hur et al., 

2009), as highlighted in the book, Numerical Recipes: The Art of Scientific 

Computing, by (Press et al., 2007), there are no good, general solvers for solving 

systems of multivariate polynomial equations — the equivalent problem to surface-

to-surface intersection. 

The implication of this is that one cannot arbitrarily expand the scope of shapes. 

Basic operations of certain shape elements can become so complicated as to make 

them intractable. As a guideline, in order to design tractable shape grammars, the 

basic operations of the allowable elementary objects are required to be in a 

polynomial time. In the following discussion, we assume that this is the case. 

The application of a shape rule A —*• B to shape C involves two steps: searching 

the configuration C for applicable regions according to the left-hand side A, and 

rewriting the configuration with the right-hand side B. Rewriting a configuration 

involves two steps: subtracting (-) the left-hand shape under a known t, and adding 

(+) the right-hand shape under the same t. By our previous assumption, the 

operations of - , +, t, and R for each allowable elementary objects are in polynomial 

time. As there are a fixed number of elementary objects involved, the overall time 

complexity of rewriting still has an upper bound in polynomial time. It should be 

noted that the algorithm here is brute force, given simply for the purpose of deriving 
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a polynomial upper bound—seeking efficient, uniform algorithms for rewriting is 

still a valid research (Stouffs, 1994; Jowers, 2006). In our discussion, however, 

rewriting is 'easier', in the sense that there is always a brute-force polynomial 

algorithm. 

On the other hand, searching a configuration for possible rule applications can 

be much 'harder'. In effect, the searching procedure includes two steps: using certain 

criteria to identify possible matching candidates, and then verifying the exact 

matching of each candidate under all allowable t. Even with the optimal searching 

criteria, the number of matching candidates can be high-degree polynomial. 

In the verification step for exact matching of a candidate, it is possible that there 

are infinitely many t's, which are impossible to compute in finite time. For example, 

for the candidate shape found in Figure 4-2 (marked with a dashed circle), the 

possible transformations, up to scale, are infinitely many. This phenomenon is 

known, in the literature, as indeterminacy, and viewed as an advantage where 

unexpected variations can be introduced (Stiny, 1991). 

Figure 4-2: A candidate with infinitely many matching transformations 

However, it is hard for a computer implementation to appreciate this advantage. 

The basic question then is: which is the best way to choose one or a subset of 

possible candidates from the infinitely many? Random choice provides an answer, 

but relying upon randomness to create novel designs is probably not always a good 

idea. Manual selection is another option, although this is counter to the goal of a 

computer implementation. What is for certain is that it is impossible to elaborate all 
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the infinitely many possibilities; we have to assume that the grammar designer 

specifies a way of selecting a finite subset so that the implementation is tractable. 

To conclude, there are three factors which influence the tractability of a shape 

grammar: i) the complexity of basic operations of t, -, +, <, and R; ii) the number of 

matching candidates; iii) indeterminacy—the number of possible t's for each 

matching candidates. 

Factor i) is the most controllable in terms of computer implementation; the 

system only supports basic elementary objects, for which there are efficient 

algorithms (at most a polynomial time) for these operations. 

Factor ii) probably only occurs when the number of open terms is large. In 

practice, the number of open terms is usually a small number. 

Factor iii) is somewhat controllable. As stated in (Stiny, 1991), the detailed 

conditions for indeterminacy are more complicated and vary from algebra to algebra 

and from dimension to dimension; Cartesian products are recommended as a useful 

way to avoid indeterminacy in general. 

In practice, chances for indeterminacy are much less. Shape grammars are 

seldom designed based on purely geometry—typically, they are imbued with 

semantics in the form of labeled points or elements. The semantics are usually so 

rich to permit only a limited number of possible transformations. For instance, in 

Chapter 5, I consider graph-like structure designed to present the layouts of 

conventional buildings (Figure 5-1, Figure 5-2), the allowable f's belong to one of 

only eight possible cases (Figure 5-3). 

As another example, consider matching a convex quadrilateral to another, as 

shown in Figure 4-3, there are only 8 possibilities in total. There are 4 possible 

positions for point 1, viz., p\, p2, pi or p*; once it is fixed, there are only two 

positions for point 2, either the previous point or adjacent to the new position of 

point 1; after fixing point 2, then the entire shape is fixed. 
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pi i 

(a) (b) 

Figure 4-3: Parametrically matching a convex quadrilateral to another 

4.3 A paradigm for a practical, 'general' interpreter 

The existence of intractable shape grammars implies that algorithms, which deal 

with parametric shapes, fall into two categories. The first category handles special 

shapes; the second category is more general, which is only practical for shapes of 

small sizes. The implication for practice is that the best we can do is to design and 

implement a parametric shape grammar interpreter, which is capable of handling a 

subset of grammars. 

Even for tractable shape grammars, their characteristics vary significantly. One 

possible explanation for this is that the shape grammar formalism is so rich that it 

covers a wide spectrum of designs, which stem from different disciplines. The rich 

variety is shown indirectly by a number of well-known categories such as subshape-

driven vs. marker-driven, non-parametric vs. parametric, rectilinear vs. curvilinear, 

etc. The variety can also be observed from details of the basic operations of t, - , +, <, 

and R; their diversity forms different algebras, for example Uo, Ui, U2 and U3 (Stiny, 

1991), on top of which shape grammars can be further defined. There is also, in the 

literature, an examination of variety by the criteria of different kinds of restrictions 

on rule format and ordering; in (Knight, 1999), six types of different shape grammars 

are distinguished, namely, basic grammar, nondeterministic grammar, sequential 

grammar, additive grammar, deterministic grammar, and unrestricted grammar. 
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The varieties are tangibly noticeable even when we focus on grammars for a 

specific subset of the tractable grammars, for example, 2D, rectilinear (with limited 

curved) shapes. The following are three such examples: 

The Baltimore Rowhouse grammar (see Chapter 6 for details) is an example of a 

shape grammar that captures a specific building style (see Figure 6-8 for all the 

shape rules and Figure 6-9 for a sample derivation). Other examples in this type 

include the Queen Anne (Flemming, 1987) and Frank Lloyd Wright's Prairie House 

grammars (Koning and Eizenberg, 1981). These are parametric shape grammars, in 

which shape rule application does not depend on emergent shapes. Markers drive 

shape rule application, and configurations are rectangular or can be approximated as 

such. Moreover, parameterization is often limited to the height or width of a room, or 

to the ratio of a room split. The central manipulation unit is a room (or space). Shape 

rules typically relate to adding a room, to splitting a room, or to refinements such as 

adding windows, doors, etc. 

Figure 4-4 shows rules and a sample derivation of a stylized sports figure 

grammar (Carlson et al., 1991), which is an example of a structure grammar, an 

augmented variation of a formalism known as a set grammar (Stiny, 1982). The 

kindergarten grammar is another example in this type (Stiny, 1980b). These 

grammars treat designs as symbolic objects; designs are enforced to be an element of 

the sets from which they are formed. Thus, the integrity of the compositional units in 

designs is preserved, as these parts cannot be recombined and decomposed in 

different ways. This is in contrast to those grammars, where shape elements are 

decomposed and recombined freely so that new shapes can emerge, for example, the 

grammar in Figure 4-5. We are essentially manipulating symbols in a 2D space, thus 

making these grammars amenable to computer implementation. The resulting shapes 

are simply replacements of internal symbols that occur at the final stage, for the 

purpose of visualization. 
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Figure 4-4: Rules and a derivation of the stylized sports figure grammar 
Adapted from (Carlson et al., 1991) 

o 

Figure 4-5: Rules and a derivation of the emergent-fish grammar 
Adapted from (Knight and Stiny, 2001) 

Figure 4-5 shows rules and a sample derivation of a grammar, where a fish-

shape emerges during the application of shape rules. This is example of those shape 

88 



www.manaraa.com

grammars defined in (Stiny, 1980a), where shape elements are free to be 

decomposed and recombined so that shape emergence is an important feature during 

shape rule application. Computation here is non-classical (Knight and Stiny, 2001), 

which may or may not cause difficulty for computer implementation, depending 

upon the factors listed in Section 4.2.2. 

Table 4-1 shows a comparison of several characteristics of the three grammar 

examples discussed above on concerns, which are of importance to computer 

implementation. The variety in this table shows that, even for tractable shape 

grammars, it is still difficult to come up with the design of a single uniform 

interpreter. 

Table 4-1: Comparison of characteristics important for computer implementation 

Grammar 

Rowhouse 

Sports figure 

Emergent-fish 

Driver 

Marker 

Marker 

Subshape 

Emergence 

No 

No 

Yes 

Manipulation unit 

Room 

Symbol 

Shape element 

Parametric 

Yes 

No 

No 

Context 

Sensitive 

Sensitive 

Free 

In contrast, more often than not, it is relatively straightforward to implement an 

interpreter for a special class of shape grammars, for example, grammars that capture 

building styles. As we cannot handle intractable shape grammars, why not focus on 

dealing with as many tractable shape grammars as possible, employing a concept, in 

spirit, comparable or similar to approximation algorithms (Cormen et al., 2004). 

Following this idea, I propose a paradigm for practical, 'general' parametric shape 

grammar interpreters, as shown in Figure 4-6. The paradigm is comprises a set of 

sub-interpreters, each for a class of tractable shape grammars. In this way, 

collectively, most parametric shape grammars can be covered. 

This paradigm is a perfect subject for applying techniques of object-oriented 

design, in particular, modularity, polymorphism and inheritance (Grady et al., 2007). 

The top-level formalism of shape grammars can be implemented as abstract classes 
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and methods, which are materialized in the sub-interpreter for each class. The shared 

functionalities—for example, interfaces, can be implemented as part of the top-level 

infrastructure such that developers for the subclass interpreters are free from 

unnecessary redundant work. 

All parametric 
shape grammars 

Interpreter: for 
subclass (A r% 

Interpreter for 
subclass C 

Interpreter for 
subclass D 

^ \ 

Interpreter for 
subclass B 

Figure 4-6: A paradigm for a practical 'general' parametric interpreter 

The paradigm can be promoted to follow the successful model of the Eclipse 

project (www.eclipse.org: last accessed 07/09/09), which aims at an open 

development platform comprising extensible frameworks, tools and runtimes for 

building, deploying and managing software across the lifecycle. By building a 

similar platform backed up by the above paradigm, researchers geographically 

dispersed around the world can collaboratively work on the same platform; each 

freely developing their idea as an Add-in, thus contributing to their effort. Designers 

can freely download and exploit up-to-date grammar systems, testing new design 

ideas, suggesting new features and reporting bugs. Such a platform fundamentally 

changes the past discrete structure of the research of implementing a shape grammar 

interpreter (Chau et al., 2004); duplicated work is significantly reduced, and the 

scope of the users, greatly expanded. 

It should be noted that the proposed paradigm depends on a classification of 

shape grammars into subclasses. Moreover, the classification is considered to be 
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'better' when the number of subclasses is smaller, and when, simultaneously, the 

scope covered, collectively, is larger. Here, a research question immediately emerges: 

what is the most optimal way of classifying shape grammars! 

4.4 Classification of shape grammars 

As mentioned previously, in the literature, there exist ways of classifying shape 

grammars from various perspectives. Some are based on relatively 'obvious' 

properties, such as, 2D vs. 3D, rectilinear vs. curvilinear, etc. Others go deeper, for 

example, structure grammars (Carlson et al., 1991). Classification is also made based 

on the properties of shape rules as well as their application. For example, non-

parametric vs. parametric based on how shape rules are specified, marker-driven vs. 

subshape-driven based on how to drive the application of shape rules, context-free vs. 

context-sensitive based on neighborhood dependence when applying shape rules, etc. 

Knight's six types of shape grammars falls into such a classification (Knight, 1999). 

Classification from the field of formal linguistics can be introduced too, for example, 

finite vs. infinite based on the size of the underlying language, that is, the design 

space. 

However, none (of the above) is really appropriate for the purpose of 

implementation. This is because that each such category is still too broad in that the 

grammars covered still have enormous variety. In other words, the classification 

criteria are not fundamental with respect to concerns of implementation. 

The fundamental elements for a computer program are algorithms and data 

structures; this is evident from the title of Niklaus Wirth's classic textbook 

Algorithms + Data Structure = Programs (Niklaus, 1978). This is equally true for 

computer implementations of shape grammars. An implementation is essentially a 

computer program that manipulates the internal representation of a design—data 

structure—by a set of operations. The basic operations of t, - , +, <, and R operate on 

data structure, and their details vary from one data structure to another. The exact 

procedure of searching for matching candidates depends on the data structure, so do 

the exact match verification. The underlying data structure in turn determines how to 
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carry out these operations, and how efficient they are. Moreover, the data structure 

pre-fixes the power of the shape rules built on top of them; as stated in (Stiny, 1994), 

"the antecedent definition of meaning parts and units limits the subsequent 

possibilities for inquiry... Descriptions fix things in computations, and nothing is 

ever more than its description anticipates explicitly." 

The argument can also be conducted from a cognitive aspect. The design of a 

data structure is simply a particular view of the underlying subject, which is present-

at-hand. As stated in (Winograd and Flores, 1986), "Whenever we treat a situation as 

present-at-hand, analyzing it in terms of objects and their properties, we thereby 

create a blindness." Things covered by any current data structure correspond to 

those that are seen; the blind parts are left to other data structures. 

In line with this argument, the underlying data structure used to support 

algorithms for the implementation fundamentally characterizes the corresponding 

class of shape grammars. Assuming that there is always a power difference between 

any two data structures adopted in the paradigm, and if no other data structure 

subsumes any of the adopted data structures, then we have reached an optimal 

classification. 

4.5 Augmented practical 'general' paradigm 

The 'general' paradigm comprises a set of sub-interpreters, one for each class of 

shape grammars. Moreover each class is backed up by a data structure, which 

reflects the internal characteristics of the corresponding subset of shape grammars. 

Apart from the internal characteristics of shape grammars, there are other factors 

that influence computational tractability, for example, how shape grammars are 

designed and described. Traditionally, a shape grammar is designed to simply and 

succinctly describe an underlying building style, with little consideration on how the 

grammar can be implemented. For example, as is often found in the literature, such 

descriptions of the form "If the back or sides are wide enough, rule 2 can be used..." 

are inherently counter-computable. As a result, in order to translate this into 

programming code, shape rules have to be specified in a computation-friendly way: 
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that is, shape rules need to be quantitatively specified; furthermore, there is enough 

precision in the specification to disallow generation of ill-dimensioned 

configurations. 

Closer examination also shows that there may be more than one way to describe 

a particular shape rule; it is possible that one way is easy to compute, and the other, 

might be computationally intractable. As a result, it is desirable to design an API-like 

framework to support the design of shape grammars; then, shape grammars that 

follow the framework are guaranteed to be computationally tractable. Such a 

framework is built on top of an underlying data structure, and basic manipulation 

algorithms. Moreover, for the ease of code translation, a meta-language built on top 

of the basic manipulation algorithms should also be developed. As grammars in 

different classes typically have differing underlying structures, the appropriate 

underlying data structure for the framework will be different. Consequently, the 

overall framework comprises a series of sub-frameworks, one for each class of shape 

grammars, as shown in Figure 4-7. As the overall framework is capable of ensuring 

computability, we term shape grammars following such a framework as 

computation-friendly. 

All parametric 
shape grammars 

Sub-framevyprk 
for subclass A 

Sub-framework 
for subclass C 

ffV 

n 
Sub-framework 
for subclass D 

Sub-framework 
for subclass B 

Figure 4-7: One sub-framework for each subclass 
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Chapters Three sub-
framework examples 

In this chapter, the paradigm for a practical, 'general' interpretation of shape 

grammars discussed in last chapter will be detailed by examining three sub-

framework examples. 

In choosing these sub-frameworks, it was deemed advantageous to initially 

select a sub-framework for a subclass with the largest population. It turns out that a 

shape grammar that captures building styles happens to be good choice. Of the shape 

grammar applications reviewed by (Chau et al., 2004) (Figure 2-8), about half deal 

with architectural plans. Moreover, conventional buildings, namely, buildings with 

rectangular spaces or dominated by such, are often the subject matter. Consequently, 

a sub-framework for shape grammars capturing corpora of conventional building 

types, namely, the rectangular sub-framework, is chosen. 

Two-dimensional polygons are another type of shape widely used in existing 

shape grammars, for example, Chinese ice-ray lattices (Stiny, 1977) and 

Hepplewhite-style chair back grammars (Knight, 1981a). Thus, a sub-framework for 

two-dimensional polygonal shapes is also chosen. From the appearance, such a sub-

framework can be viewed as an extension of the rectangular sub-framework. Yet, as 
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to be shown in this chapter, the extension is not straightforward. In fact, both the 

application context and the basic manipulations are quite different. 

The rectangular sub-framework relies on a graph-like data structure. This leads 

to a concern of the relationship between shape and graph grammars; the former is 

mainly investigated in the design field, in particular, architectural design, while the 

latter is widely studied in computer science. The comparison in this chapter will 

show that both differ significantly although there is a noticeable intersection. Graph 

grammars are most useful when dealing with those shape grammars, which are 

dimensionless and context-free. Accordingly, we consider graph grammars as a sub-

framework for implementing dimensionless, context-free shape grammars. 

5.1 Rectangular sub-framework 

Conventional buildings are buildings with rectangular spaces or dominated by such. 

A rectangular space is specified by a set of walls in such a way that the space is 

considered rectangular by the human vision system. In Figure 5-1, among other 

variations, a space can be specified by four walls jointed to one another, four disjoint 

walls, three walls, or framed by four corners. 

I I I L J 

§f ® 

Figure 5-1: Examples of rectangular spaces and corresponding graph-like data structures 

Spaces (rooms) are central to buildings—whence, to shape grammars that 

describe building styles. For shape grammars capturing corpora of conventional 

building types, shape rules are parametrically specified in such a way that parametric 

subshape recognition is typically of searching a special room under certain 

constraints, which is actually label matching. Such grammars generally start with a 
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rough layout; details, such as openings and staircase, are added at a subsequent stage. 

There are two main ways of generating a layout: space subdivision and space 

aggregation. Combination of the two ways is also possible. 

5.1.1 A graph-like data structure 

The interpreter needs a data structure to represent layouts with rectangular spaces; 

that is, a data structure that contains both topological information of spaces as well as 

concrete geometry (in this dissertation, 2D) data of a layout including walls, doors, 

windows, staircase, etc. It needs to support viewing a layout as a whole, viewing a 

layout from a particular room with its neighborhood, or simply focusing on a 

particular room itself. Moreover, the data structure needs to support Euclidean 

transformations augmented by both uniform and anamorphic scaling. 

A graph-like data structure (Figure 5-1) has been designed to specify such 

rectangular spaces. There is a boundary node for each corner of the rectangular space, 

as well as a node for each endpoint of a wall. These nodes are connected by either a 

wall edge (solid line) or an empty edge (dotted line). A central node represents the 

room corresponding to the space, and connects to the four corners by diagonal edges 

(dashed lines). It is needed for manipulating boundary nodes of room units, such as 

dividing a wall through node insertions, creating an opening in a wall by changing 

the opening's edge type to empty, and so on. More information about a room is 

recorded in the room node, e.g., a staircase within the space. Windows and doors are 

assigned as attributes of wall edges. Further, unlike traditional graph data structures, 

the angle at each corner is set to be right angle. A node has at most eight neighbors. 

A set of such graph units can be combined to represent complex layouts comprising 

rectangular spaces (Figure 5-2). 
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Figure 5-2: A layout represented by a set of graph units 

5.1.2 Transformations of the graph-like data structure 

The target layout is assumed to comprise only rectangular spaces, and the allowable 

transformations are Euclidean with uniform and anamorphic scaling. As shape rule 

application is label-driven, translation is automatically handled. The graph-like data 

structure is capable of easily handling uniform and anamorphic scaling, by firstly 

matching room names, then labels on corner nodes, and lastly, by comparing 

possible room ratio or dimension requirements. 

As a result, only rotations and reflections remain to be considered. Note that we 

can always pre-process a graph-like data structure so that the rectangular spaces are 

either horizontal or vertical. As the spaces are rectangular, rotations are limited to 
o 

multiples of 90 and reflections are either horizontal or vertical. Moreover, a vertical 

reflection can be viewed as a combination of a horizontal reflection and a rotation. 

Hence, any combination of reflections and rotations is equivalent to a combination of 

horizontal reflections and rotations. Consequently, the following transformations are 

all we actually need to consider: 

• R0: default; no rotation, with possible translation and/or scale. 

• R90, R180, R270: a rotation of 90°, 180°, and 270°, respectively, with 

possible translation and/or scale. 

• RRO, RR90, RR180, RR270: (first a rotation of 0°, 90°, 180°, and 270°, 

respectively, followed by a horizontal reflection) horizontal reflection, 
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vertical reflection, or their combination, with possible translation and/or 

scale. 

As shown in Figure 5-3, transformations can be implemented on the data 

structure by index manipulation. Each of the eight possible neighbors of a node is 

assigned an index from 0 to 7; indices are then transformed simply by modulo 

arithmetic. For example, index+2 (modulo 8), counterclockwise rotates neighbor 

vertices through 90°. Other rotations and reflections are likewise achieved. By 

viewing the original neighbor relationship for each node with the transformed indices, 

we obtain the same transformation of the whole graph. By taking advantage of this 

fact, we need to manipulate only the interior layout instead of the left hand side of 

every shape rule. Consequently, we only need to consider how to apply shape rules 

with the default transformation, which is automatically applicable to the 

configuration under different possible transformations. This gives the same results, 

but is much simpler to achieve. 
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(12-X)%8 -+ Reflect & Rotate 180° 
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Figure 5-3: Transformations of the graph-like data structures 

5.1.3 Common functions for the graph-like data structure 

With the graph-like data structure, a layout is represented by an eight-way doubly 

linked list formed by nodes and edges. Shape rule application manipulates this 

structure, and a set of common functions shared by the shape rules can be identified. 

The functions are implemented in an object-oriented fashion. 
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Design of classes 

LNodeCorner and LNodeRoom classes represent a corner node and a room node, 

respectively. The LNode class represents all other nodes. Edges are represented by 

the Edge class, with an attribute to represent the different edge types. Theoretically, 

in order to traverse the entire layout, just knowing the handle to a node or an edge is 

sufficient. For easy manipulation, the InteriorLayout class is defined to represent an 

interior layout configuration. There are several different ways to view an 

InteriorLayout object: i) as a layout with certain status marker, ii) as a list of rooms 

(room nodes), and iii) as a list of nodes and edges. Different views are useful under 

different contexts. For example, it is convenient to use views iii) to display the 

underlying layout: drawing all edges as well as the associated components first, and 

then drawing all nodes as well as associate components. To accommodate these 

different views, the InteriorLayout maintains the following fields: 

• A status marker 

• Name: for display and debugging purpose 

• A hash map of a room name to a list of room nodes: for fast retrieval of one or 

more room nodes with a given name 

• A list of room nodes for the entire layout 

• A list of all nodes for the entire layout 

• A list of all edges for the entire layout 

• A hash map of attributes to values for other status values particular for a special 

shape grammar 

Examples of common functions 

Some common functions are relatively easy to carry out, for example, splitting a 

room into two and merging two rooms into one. Others are more complicated; 

examples include finding a room with a given name, finding the north neighbor(s) of 

a given room, finding the shared wall of two given rooms, etc. The sequel describes 

the algorithm and pseudo code for these examples. 

100 



www.manaraa.com

Finding room(s) with a given name 

In the data structure, a room node represents a room. An InteriorLayout object 

maintains a hash map of room names to lists of room nodes. Thus, finding room(s) 

with a given name is simply to query the hash map with the room name as input. 

findRoomNodes(iVame) 
Query the name-to-rooms hash map with parameter Name. 

Finding the north neighbor(s) of a given room 

Finding the north neighbor(s) of a given room is a special case of finding neighbor(s) 

of a given room. It turns out all that finding neighbor functions in the other three 

directions can be implemented as finding the north neighbor(s) under a certain 

transformation. For example, the east neighbor(s) of a given room is the same as the 

north neighbor(s) of the given room under a R90 transformation. 

^ — ^ p 

$ 
M, 

fr-ftr-* 
m 

/ B \ 
nodeNW % U < -M 

m^ 
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% — * r — # 

nodeNE 
M, / c\ 
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a) 0 north neighbor b) 1 north neighbor c) >1 north neighbor d) missing rightmost neighbor 

Figure 5-4: Different cases for the north neighbor(s) of a room 

A room may have zero, one, or more north neighbors (Figure 5-4), which can be 

represented by a list of room nodes. Intuitively, to find the north neighbor(s) of A, we 

start by finding A's north-east corner node, nodeNE, and north-west corner node, 

nodeNW. Then, we traverse through each corner node from nodeNE (inclusive) to 

nodeNW (exclusive) along the westerly direction to find its north-west neighbors. All 

north-west neighbors found are desired room nodes. For example, in Figure 5-4c, the 

north neighbors found are B, and C. However, as shown in Figure 5-4d, this intuitive 

algorithm will miss the rightmost neighbor room, that is, when two neighbor rooms 

only partially overlap so that nodeNE is on the south edge of that neighbor room, and 
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is not the desired end node. Therefore, we need to modify the intuitive algorithm to 

have the correct start and end nodes to loop through. 

It can be proven that nodeNW is always the correct end node as a north neighbor 

B has to overlap with room A, which means room B must has a south-east corner 

node, nodeSE, at the right side of nodeNW (Figure 5-5a), or is nodeNW (Figure 5-4c). 

Otherwise, B is not a north neighbor of A. 

The starting node can be either nodeNE, or a node to the right of nodeNE 

(Figure 5-5b). If nodeNE is not the start node, then it neither has a north-west nor a 

north-east neighbor, since having either neighbor means that nodeNE is the correct 

start point (Figure 5-5c), which is a contradiction. However, the converse is not true; 

as shown in Figure 5-5d, nodeNE neither has a north-west nor a north-east neighbor, 

but nodeNE is still the correct start node. That is, the only condition for a node, 

nodeSE, to the right of nodeNE, to be the correct start node is that it must have a 

north-west neighbor. Therefore, under the condition that nodeNE has no north-west 

and north-east neighbor, the algorithm searches for the first node, which is to the 

right of a nodeNE with a north-west neighbor. If such a node is found, it is the real 

start node. If a null neighbor is found, nodeNE is still the correct start node. The 

pseudo code is given below. 

-O 

•;# B 
..-nd'deNW 

'- :-#rO XnodeSE. 

' A *•-. 

nodeNE 

^9 
(a) nodeNW is always the etidNode 

(c) nodeNE cannot have a north-west or 
north-east neighbor if it is not the startNode 

a -® 

B®:, 
"nodeNE 

# # ®—®-

' A 

nodeSE 

f£ 
(b) nodeNE is not the startNode 

(d) nodeNE has neither a north-west nor a 
north-east neighbor, but it is still the startNode 

Figure 5-5: The start and end nodes for finding neighbor room(s) 
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findNorthNeighbors(A, T) 
(all operations related to directions are under transformation T) 
endNode <— north-west neighbor of A 
nodeNE <— north-east neighbor of A 
startNode <— nodeNE 
if nodeNE has neither north-west nor north-east neighbor 

search for a right neighbor, node, of nodeNE, with a north-west neighbor 
if found, startNode <— node 

go through each node in between startNode (inclusive) and endNode 
(exclusive), and get all north-west neighbors, neighbors 

return neighbors 

findEastNeighbors(A) // Other neighbors are likewise defined 
return findNorthNeighbors(A, R90) 

Finding the shared wall of two given rooms 

In the data structure, the shared wall of two given rooms is represented as a list of 

nodes connected by edges; the simplest form of a shared wall is given by two nodes 

connected by an edge. For two given input room nodes, A and B, in general, A and B 

may not be neighboring rooms at all. If, however, A and B are real neighbors, B can 

be in any one of four directions from A. Therefore, it is necessary for the algorithm 

to test all four sides of A; for each particular side, it is simply to test whether B is in 

the north neighbors under a given transformation T. If B is determined as a neighbor 

of A at a given side, the exact start node, wStart, and end node, wEnd, need to be 

further determined. The edge from the north-east node, nodeNE, to the north-west 

node, nodeNW, of room A under transformation T is guaranteed to be the wall of 

room A, but not necessarily the wall of room B (Figure 5-6a). As a result, wStart may 

be actually a node to the right of nodeNE. This node is found by traversing from 

nodeNE to nodeNW, testing whether B is its north-west neighbor or not. Similarly, 

wEnd may be actually a node to the left of nodeNW. This node is found by traversing 

from nodeNW to nodeNE and testing whether B is its north-east neighbor or not. The 

pseudo code is given below: 
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findWallShared(A, B) 
transformations <- {RO, R90, RISO, R210} 
for each transformation in transformations 

results <— findNorthWallShared(A, B, transformation) 
if results is not null 

return {results, transformation} 
return nw// 

findNorthWallShared(A, fi, transformation) 

if 5 not in neighbors <— findNorthNeighbors(A, transformation) 
return nw// 

nodeNE <— north-east neighbor of A 
nodeNW '<— north-west neighbor of A 
wStart <— null 
wEnd <— null 
for each node, node, from nodeNE to nodeNW 

if north-west neighbor of node is A 
wStart <— node, and break 

if wStart is n«//, then wStart <— nodeNE (Figure 5-6b) 
for each node, node, from noafe/VWto nodeNE 

if north-east neighbor of node is B 
wEnd <— node, and break 

if wEnd is ««// 

wEnd <— nodeNW (Figure 5-6b) 
return {wStart, wEnd} 

nodeNW 

(a) ^ 1 

nodeNE 

Figure 5-6: Finding wStart and H>£nd 

5.1.4 Meta-languages 

All common functions collectively form an API (Application Programming 

Interface), which expresses the capability of its underlying data structure. Such an 
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API facilitates the design of shape rules, in a way similar to how the Java API helps 

to build Java applications. Moreover, grammar designers can apply the API to ensure 

the computability of their designed grammars. Further, the API supports describing 

grammars in a meta-language; in this way, shape rules are designed in a rigorous 

way so that they can easily translated into pieces of code, the ultimate format to 

interpret shape rules. Figure 5-7 shows two such examples. The meta-language is in 

the form of an if-then statement; the (/"-part determines whether the rule is applicable 

or not; the then-part specifies how to do the rewriting. Essentially, the meta-language 

is a set of function calls, which are predefined in the API. 

Precondition: 'Rff' exists, and is three-bay 
(2 windows and 1 door). 
Transformation: N/A 
This rule adds to the front block a hall way centered about the 
front door. 

i f 
roomExists('Rff') && numberOfBays() == 3 

then 
rooms = getRoomsBetween('Rfb', 'Rff') 
w = hallwayWidth(getDoor('frontDoor'),getRoom('Rfs')) 
foreach (room in rooms) 

room.horSplit(name=room.getName, width=*, name='tmp', width=w) 
hf.merge(getRoom(' tmp)) 

hf.name('Hf') 

(a) 

Explicit condition: No staircase. 'Rfb' and 'Rff exist and are 
neighbors. 
Implicit condition: No 'SfS.' 
Width of front block is < 18'. 
Overall condition^ stairFront is false. 'Rfb' exist. No 'SfS.' Width 
offrontblockis<18'. 
Transformation: N/A 
Add a staircase to room 'Rfb.' 

if 
IstairExists() && !roomExists('SfS') && 
roomExists('Rfb') && getFrontBlock().width < 18' 

then 
room('Rfb').addStaircase(position='bottom&crossFrontDoor', 

width=6, height=4, getFrontDoor()) 

(b) 

Figure 5-7: Two sample rules of the rectangular sub-framework and their meta-language 

Rfb 

L£l 

I'M) 

IRff 

Wd 

Hf 

w 

Rbs Rbs 

Rfb Rfb 

Rff Rff 

stairFront = true 
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5.2 Polygonal sub-framework 

Geometrically, the polygonal sub-framework may appear, quite simply, to be an 

extension of the rectangular sub-framework. Closer examination actually tells a 

different story. Technically, for example, the nice property of performing geometric 

transformations by indicial change, which works for the rectangular sub-framework, 

is not generally applicable to the polygonal sub-framework. The basic elements of 

the rectangular sub-framework are rectangles, which always have four sides, while 

the basic elements of the polygonal sub-framework are arbitrary polygons, for 

example, the triangle, quadrilateral, pentagon, hexagon and so on, each having a 

different number of sides. This makes it impossible to conduct modulo operations 

uniformly. 

It is possible to extend transformation-by-indicial-change to those shapes 

composed of polygons of same type, for example, hexagon. However, an endeavor 

along these lines is not interesting due to the fact that the typical application context 

and basic manipulations of this polygonal sub-framework are very different from the 

rectangular sub-framework. 

While the rectangular sub-framework works for shape grammars describing 

building layouts, the polygonal sub-framework does not. The reason is that majority 

of building spaces are rectangular rather than polygonal. Instead, shape grammars 

involving polygonal shapes are more common in describing other kinds of designs, 

for example, Chinese ice-ray lattices (Stiny, 1977), Hepplewhite-style chair backs 

(Knight, 1981a), as well as abstract paintings (Knight, 1989), see for example, the 

nonrepresentational paintings of Fritz Glarner (Figure 5-8). Such shape grammars are 

typically parametric and marker-driven. The central manipulation is subdivision, 

which is the theme selected for the polygonal sub-framework. Besides subdivision, 

there are other auxiliary manipulations, such as filling colors, inscribing to the initial 

shape with a shape of triangle, pentagon, hexagon, etc (Stiny, 1977). Such auxiliary 

manipulations cannot be generated by subdivision and are handled in a special way, 

by adding extra functions, or by other means, for example, treating the shape to be 

inscribed as part of the initial shape. 
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i 

Figure 5-8: Relational painting No. 64, 1953, by Fritz Glarner 
(http://www.rnetmuseum.org/toah/hd/geab/ho 1983.579.htm: accessed May 2009) 

Subdivision is a procedure for dividing a polygon into two smaller ones by a 

'cutting' line, which is a straight-line segment, a joint line of two segments, or a 

polyline of multiple line segments. As a result, transformations become unnecessary, 

since an equal effect can be achieved by changing the coordinates of the endpoints of 

the cutting line. For example, Figure 5-9a shows a shape rule which subdivides a 

triangle into a smaller triangle and a quadrilateral. Figure 5-9b shows the horizontal 

reflection of the shape rule of Figure 5-9a. 

(a) 

-A 
(b) 

Figure 5-9: A shape rule of subdivision and its horizontal reflection 
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The same effect can be achieved by modifying the endpoints of the cutting line. 

Note that the shape rule is parametric so that by varying the parameters of the shape 

and the endpoints of the cutting line, the shape rule of Figure 5-9b can become 

exactly the same as Figure 5-9a. 

The determination of the position of a cutting line starts with inserting a point or 

multiple points in the interior of a polygon or on its boundary; then the cutting line is 

generated by connecting new inserted points to other existing points of the polygon, 

possibly involving line extensions and intersections, or by simply interconnecting the 

new inserted points. There are typically constraints over the candidate position of a 

new point. The constraints can be a fixed position like the centroid of a polygon, an 

interval on a line, or a particular region. This means that there are generally infinitely 

many possibilities to position a new point. Two ways frequently used to position the 

new point are manual pickup and random selection. 

Noticeably, a 'subdivision' of the polygonal sub-framework is different from a 

'splitting' of a rectangular sub-framework. The former is typically oblique while the 

latter is always horizontal or vertical. Moreover, a cutting line of the former often 

has infinitely many possibilities while the position of a splitting line of the latter is 

usually uniquely 'fixed'. 

5.2.1 Data structure for polygonal sub-framework 

In terms of the data structure for the polygonal sub-framework, a shape consists of a 

list of polygon objects, each of which further consists of a list of straight-line 

segment objects. Note that, here, polygons are simple; that is, there is no self-

intersection. For the convenience of manipulation, the line segments of a polygon are 

counter-clock-wise arranged and indexed by indices. Operations like the 

modification of the shared line segment of two polygons change the statuses of 

multiple related objects. Objects are used as references to ease such operations. By 

this way, the underlying data structure is able to support three different views: i) all 

the polygons as a single shape, ii) individual polygons with markers, and iii) 

individual labeled line segments. In addition, hash maps of markers to polygons, 

108 



www.manaraa.com

labels to points, and point labels to line segments are used to simplify the search of 

polygons, line segments and points. 

5.2.2 Common functions of polygonal sub-framework 

Key common functions include the function of dividing a simple polygon into two 

by a cutting line, and those determining the positions of the new points. 

Dividing a simple polygon into two by a cutting line 

Here, we consider a more general function, dividing a simple polygon G into 

multiple sub-polygons by a cutting line C (Figure 5-10a). 

This problem can be solved by converting the problem to finding the intersection of 

two arbitrary (may not be simple) polygons, which has been well studied (Stouffs, 

1994; Greiner and Hormann, 1998; O'Rourke, 1998; Stouffs and Krishnamurti, 

2006). This is done by first finding a rectangle, which is larger than the bounding 

box of polygon G, and then forming two simply polygons, Gci and Gc2, by 

extending the starting and ending line segments of the cutting line (Figure 5-10b); 

the desired results will be (G D Gci) U(G n Gci) (Figure 5-10c). 

109 



www.manaraa.com

cy 

(a) (b) 

;"--._ 
"'"-. 

l j 
\ f ~J 

' 

l\ 1 \ 

"-->/ 

G 

" \ 
\ 

* • -

A 
i i 

/ i 

»»-i " " • • 

^ " • " j 

N * 
/' 
' 

/ 
i\z \ 

(c) 

Figure 5-10: Dividing a simple polygon by intersection of two arbitrary polygons 

In the following, I describe a simpler algorithm, which is inspired by (Greiner 

and Hormann, 1998). This algorithm takes advantage of the special properties of 

cutting lines in the polygonal sub-framework. A cutting line is always interior or on 

the boundary of the polygon G and has no self-intersection. Moreover, the start point 

Ps and end point Pe of the cutting line are on the boundary of polygon G (Figure 

5-12a). In fact, any cutting line can be reshaped to satisfy these conditions (Figure 

5-11). 
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(a) (b) 

Figure 5-11: Reshaping the cutting line 

The algorithm starts from the start point Ps of the reshaped cutting line, 

marching to the end point Pe, segment by segment. Each segment is tested for 

whether intersecting the polygon G or not by testing whether the other endpoint falls 

on the boundary of polygon G, for example, endpoint Pi for segment 5;, P2 for 

segment S2 (Figure 5-12a). When an intersection is found, two new polygons are 

created by using the cutting line matched so far and continuously matching right and 

left, respectively, along the polygon G until going back to the start point. The 

segments marched are then removed from the cutting line so that a new cutting line 

is formed for the next step (the dashed line in Figure 5-12). If the new cutting line is 

empty, then both new polygons are the desired results. Otherwise, by using the point-

inside test on the two new polygons with the point P next to the start point of the 

new cutting line, the one which P does not fall inside (dark shaded polygons in 

Figure 5-12) is the desired result, and the other (light shaded polygons in Figure 

5-12), together with the new cutting will be used as the input for the next step. The 

above procedure is repeated and the entire algorithm stops when the cutting line 

becomes empty (Figure 5-12f). Figure 5-12 shows an example of applying the 

marching algorithm. 

Note that there are possible degenerate cases that some segments matched 

overlaps with the some segments of the polygon G (Figure 5-12c, d, and f). In such 

cases, the number of segments in one of the two new polygons must be two; this can 

be easily tested and ignored. Another issue with such cases is that the segment 
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coming from the cutting line is co-linear and connected to the next segment coming 

from the polygon input, and these two should be merged into one (Figure 5-12f). 

(a) (b) (c) 

(d) (e) (t) 

(g) (h) 

Figure 5-12: A simpler marching algorithm for polygon subdivision 

The intersection test dominates the running time of the marching algorithm. The 

total number of intersection tests for marching along the cutting line is mn, where m 

and n is the number of segments in C and G, respectively. As a result, the complexity 

is O(mn). The pseudo code of the marching algorithm is given below: 
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dividePolygon(G, C, newPolygons) 
S = get first segment from C 
while (the other endpoint of S not falling on G) 

marchedSegments.&dd(S) 
S = get next segment from C 

marchedSegments.&dd{S) 
I = the other endpoint of S 
C = C.remove(marchedSegments) 
divide the intersected segment of G into two if / is not its endpoints 
newPolygonl = marching along marchedSegments and turning right at / 

until reaching the start 
newPolygon2 = marching along marchedSegments and turning left at / 

until reaching the start 

if (C is empty) 
newPolygons.add(newPolygonl) 
newPolygons.add(newPolygon2) 

return 

P2 = the point next to the starting point in the new cutting line 
if (P2 falls inside newPolygonl) 

newPolygons. &dd{newPolygon2) 
dividePoXygox\{newPolygonl, C, newPolygons) 

else 
newPolygons. &dd(newPolygonl) 
dividePolygon(newPo/^on2, C, newPolygons) 

Determining the positions of the new points 

Determining the positions of the new points can be done in two ways, randomly or 

manually. Manual determination needs the help of an interface, for example, 

highlighting the candidate regions, and enforcing further constraints for the next new 

point after a new point has been picked. Random determination requires computing 

all candidates of intervals and regions, and randomly selecting a point. 

5.2.3 Meta-language for polygonal sub-framework 

Figure 5-13 shows the meta-language for two examples taken from (Knight, 1980). 
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(*i, y,) 
(x2,y2) 

The point (xi, yO is any point between 5/8 and 3/4 the distance 
from point P3 to point Pi. 
The point (x2, y2) is any point between 5/8 and 3/4 the distance 
from point P3 to point P2. 
The angle a must be > 90°. 

(x2,y2)=randomPick{interval(getPoint('P3'),getPoint('P2'),5/8,3/4)) 

line=perpendicular((x2,y2),getLine('P2 ' ,'P3')) 
(x,y)=intersection(line, getLine('PI','P3')) 
(xl,yl)=randomPick(interval(getPoint('P3'),getPoint('Pl'),5/8,3/4)& 

interval((x,y), getPoint('P3'))) 

dividePolygon([(xl,yl),(x2,y2)], [Pl,P3,P2], []) 

(a) 

The point (x3, y3) can be any point on the lines with endpoints Pi 
and P2, or Pi and (xi, y0, or (x(, y0 and (x2, y2) in the intervals m 
units away from the endpoints of these lines where m is a fixed 
constant. 

fey2) 

(>vy,r m 

The point (x3, y3) can also be any point within the area defined by 
constants Ci and c2. This area is inside the quadrilateral with 
vertices at (xi, y j , (x2, y2), P2, and Pi, and its boundaries are 
parallel to the boundaries of the quadrilateral. 

(*2» V2) 

(x„y,) 

(x3,y3)=manualPick(interval(getPoint(%P1'),getPoint('P2'),m) 
interval(getPoint('PI'),(xl,yl),m) | 
interval((xl,yl),(x2,y2),m)) 

(x3,y3)=manualPick(area(getPolygon('Pi','P2','x2'+'y2','xl'+'yl'), cl, c2)) 

dividePolygon([(xl,yl), (x3,y3), P2], [PI,(xl.yl),(x2,y2),P2], []) 

(b) 

Figure 5-13: Meta-language examples of picking up new points under constraints 
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Figure 5-13a is an example of randomly selecting two points from candidate 

intervals. The meta-language enforces the constraint of angle a > 90° by determining 

(*2, yi) first, creating a line passing through {xj, V2) and a perpendicular to line P2P3, 

computing the intersection (x, v) of the new line with line P1P3 to obtain a new 

interval [(x, v), P3], and using the intersection of the interval [(x, v), P3] with the 

interval [P3, Pi, 5/8, 3/4] as the interval for (x\, y\). Figure 5-13b is an example of 

manually picking up points from candidate intervals and regions. All candidate 

intervals and regions are computed and combined as a candidate pool. The interface 

highlights the candidate pool to help users to pick up a point. 

5.3 Graph sub-framework 

The rectangular sub-framework may give the impression that shape grammars are 

just special cases of graph grammars (Brouno, 1990; Rozenberg, 1997), which have 

been widely studied in the computer science. The following discussion will show 

that both significantly differ from one another. However, graph grammars can be 

used as a sub-framework to solve those dimensionless, context-free shape grammars. 

5.3.1 Shape and graph grammars 

Graphs provide a natural way of describing complex situations on an intuitive level. 

At certain level, this characteristic caters to the advantage that visual languages (that 

is, shapes) possess. Graph grammars are rule-based modification of graphs through 

graph rule application. Graph grammars have been developed as an extension to 

graphs of formal string grammars (aka. generative grammar, or phrase structure 

grammars). Among string grammars, context-free grammars are the best understood; 

they have proven extremely useful in practical applications and powerful enough to 

generate a wide spectrum of interesting formal languages. Analogously, most 

research focuses on 'context-free' graph grammars, which typically means local 

modifications of graphs without 'global' constraints. Rule application on graphs is, 

typically, label driven. There are two basic choices for rewriting a graph: node 

replacement and hyperedge replacement. 
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Shape grammars are rule-based rewriting systems of shapes. In many ways, 

these can be viewed as an extension of formal string grammars to shapes. Their 

shared roots imply a close connection between graph and shape grammars. As an 

example, Drews and Kreowski investigated the properties of collage grammars, a 

special case of graph grammars, and applied them to generate pictures, e.g., 

Sierpinski gasket (Drewes and Kreowski, 1999) (Figure 5-14 and Figure 5-15). 

Likewise, such pictures can be also succinctly described by shape grammars (Stiny, 

1977; Piazzalunga and Fitzhorn, 1998) (Figure 5-16). This suggests that there is an 

intersection between graph and shape grammars. 

Figure 5-14: A Sierpinski gasket 
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z = 

S ::= S S :: 

Figure 5-15: A collage grammar for the Sierpinski gasket 
Adapted from (Drewes and Kreowski, 1999) 

Initial shape 

Rule 1 

Rule 2 

Figure 5-16: A shape grammar for the Sierpinski gasket 
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Consequentially, shape grammars can take advantage of graph grammar 

research results, especially for 'context-free' shape grammars; that is, when shape 

rewriting happens locally. For example, as shown in Figure 5-17, ice-ray grammars 

(Stiny, 1977), which essentially describes a process of polygon subdivision, can be 

implemented as a graph grammar. Each point corresponds to a vertex and each 

polygon is decorated with a hyperedge (the vertices drawn in squares together with 

dashed tentacles). Figure 5-18 shows shape rules vs. corresponding graph rules of 

ice-ray grammars: the right-hand hyperedges are labeled either S as candidates for 

further rule application, or T for no further rule application; the choice is based on 

certain criteria, for example, the area of the underlying polygon. Rule 3 of graph 

rules is applied in Figure 5-17. Note that there is a necessary step to convert graphs 

to figures when using graph grammars to generate designs; depending on the details 

of the conversion, such graph grammars may show different appearances (Figure 

5-15 and Figure 5-18). 

<£ -^>~Q 

£L £1 

(a) A step of ice-ray derivation (b) The corresponding hypergraph 
derivation 

Figure 5-17: Implementing the ice-ray grammar as a graph grammar 
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Graph rules 

Rule 3: 

Rule 4: 

Figure 5-18: Shape and corresponding graph rules of the ice-ray grammar 

On the other hand, shapes differ significantly from graphs and so do their 

grammars. Shape grammars do not deal solely with pure pictures; they are usually 

imbued with semantics, and represent designs in reality. In this respect, dimensions 

become typically important. Graph grammars, however, are inherently dimensionless. 

Moreover, semantics make most shape grammars context-sensitive; this greatly 

limits whatever advantages are provided by those nice theorems of graph grammars 

(on the assumption that the grammars are context-free). 

Graph grammars are essentially label-driven; this puts further restrictions in 

helping solve the fundamental problem of subshape recognition in shape grammars. 

As a classical example (Figure 5-19), there are many, potential uncountable, number 
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of square subshapes in a grid figure. Converting the grid figure to a graph does not 

change the basic characteristics of the problem. 

(a) A grid figure 

T T ? ? ? 

T T T T T 

T T T T T 

T T T T T 

O O O O O 

(b) The corresponding graph 

Figure 5-19: Subshape recognition in a grid figure 

5.3.2 Graph grammars as a sub-framework 

Research on collage grammars (Drewes et al., 1996; Drewes and Kreowski, 1999) 

shows how graph grammars can be used as a sub-framework in the 'general' 

paradigm of a shape grammar interpreter. Such graph grammars are essentially 

parametric and label-driven. The underlying data structure is obviously a graph, 

typically undirected in the context of generating designs. 

5.3.3 Common functions for graph sub-framework 

The central step in using graph grammars to generate designs is the iterative 

application of a set of graph rules, which is known as graph transformation in the 

literature (Heckel, 2006). Moreover, the manipulation of the underlying graph is also 

achieved through graph transformation. Thus, the key common function is the 

application of a graph rule. 

Graph rule application 

Graph rule applications (that is, graph transformation) are central to graph grammars, 

and many different approaches have been investigated (Rozenberg, 1997). In general, 

a graph rule r is defined by six tuples (L, R, K, glue, emb, appl): i) L and R are left 

hand side and right hand side graph, respectively; ii) K is a subgraph of L called 
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interface graph; iii) glue is an occurrence of K in R, relating the interface graph with 

the right hand side; iv) emb is an embedding relation, relating nodes of L to nodes of 

R; and v) appl is a set specifying the application conditions for the rule (Andries et 

al., 1999). It is possible that K, glue, emb, or appl is empty—certain combination of 

emptyness forms rules with special properties, for example, rules without application 

conditions and with empty embedding relation corresponds to single-pushout rules. 

The application of r to a graph G replaces an occurrence of the left hand side L 

in G by the right hand side R. This is done through three stages: i) removing a part of 

the occurrence of L from G, ii) gluing R and the remaining graph D, and iii) 

connecting R with D via the insertion of new edges between the nodes of R and those 

of D. Note that the left hand side matches all isomorphic graphs and this subsumes 

geometry transformations, which are usually important in the application of shape 

grammars. The pseudo code of applying a graph rule is given below, which is 

adapted from (Andries et al., 1999): 

applyGraphRule (G, r={L, R, K, glue, emb, appl)) 
Choose an occurrence of the left hand side L in G 
Check the application conditions according to appl 
Remove the occurrence of L up to the occurrence of K from G as well as all dangling 

edges. This yields the context graph D of L which still contains an occurrence of 
K. 

Glue the context graph D and the right hand side R according to the occurrences of K 
in D and R. That is, construct the disjoint union of D and R and, for every item in 
K, identify the corresponding item in D with the corresponding item in R. This 
yields the gluing graph E. 

Embed the right hand side R into the context graph D according to the embedding 
relation emb. For each removed dangling edge incident with a node v in D and the 
image of a node v' of L in G, each node v "in R, a new edge incident with v and the 
node v" is established in E provided that (v', v") belongs to emb. 

Return G 

5.3.4 Meta-language for graph sub-framework 

The meta-language for the graph sub-framework is mainly to call the common 

function of applying a graph rule by specifying the details of the graph rules, with 
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auxiliary functions to convert the final graph to shapes. Figure 5-20 shows the style 

of a collage grammar as well as the corresponding meta-language by using the spiral 

collage grammar, which is an example taken form (Drewes et al., 1996). Figure 5-21 

showing the result of applying the spiral collage grammar by replacing any 

hyperedge with some sub-collages at the final step. 

The starting point is a hyperedge spiral with three 
tentacles. 

Start = spiral 

S t a r t 
Edge'spiral'tri 
EndCollage 

(a) 

• 3 

spiral ::= 
. ' ' jspiral| 

2 • ' . 1 * 

Add another rotated spiral hyperedge as well as an 
any hyperedge. 

Rule 'spiral' 
Pins tri 
Edge 'any' (100,0) (200,0) (150,100) 
Edge 'spiral' ROT2D (100, 10, 0, 0, rad(rotSpiral)) 

ROT2D (198, 10, 0, 0, rad(rotSpiral)) 
ROT2D (149, 110, 0, 0, rad(rotSpiral)) 

EndCollage 

(b) 

Figure 5-20: Meta-language description of the spiral collage grammar 
Adapted from (Drewes et al., 1996). 

122 



www.manaraa.com

Figure 5-21: A result of the spiral collage grammar with some sub-collages as elements 
Adapted from (Drewes et al., 1996). 

The latest development along this line is a Java implementation of a system 

called TreeBag. See http://www.informatik.uni-bremen.de/theorie/treebag/ (accessed 

07/09/09) for further information. It includes a manual, which describes the syntax of 

a meta-language for specifying such grammars. 

5.4 Discussion 

Each sub-framework discussed in this chapter specifies a way of implementing a 

subclass of shape grammars. In terms of language space, the language covered by a 

sub-framework is equal to the language of a subclass of shape grammars. However, 

each sub-framework takes advantage of the special characteristics of the 

corresponding subclass of shape grammars so that implementation is manageable. 

That is, although the language spaces are equal, the implementation does not truly 

implement the shape grammar formalism as described in the formal definition. 

The three illustrated sub-frameworks are all two-dimensional. There is nothing 

intrinsic in the paradigm to prevent a sub-framework from being three-dimensional. 

In fact, Heisserman's boundary solid grammar is really such an example 

(Heisserman, 1994). The representation of solid objects is composed of two parts: 

topology and geometry. The topology is represented as a graph composed of nodes 

and arcs — the nodes are topological elements, and the arcs represent the adjacencies 
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between such elements. The geometry contains vertex coordinates for polyhedral 

solids. The topology together with the geometry forms a boundary representation. 

The basic operations are the Euler operators for modifying the topology, vertex 

coordinate assignment for modifying the geometry, label addition and removal, and 

state change to indicate the current status; these are all specified as predicates in the 

declarative programming language, CLP(R). Figure 5-22 shows one such example of 

a basic operation. Supported by a set of basic operations, boundary solid grammars 

specify a subclass of shape grammars, which, in the context of this dissertation, 

specifies a sub-framework. Accordingly, the boundary representation is the 

underlying data structure, the algorithms are those for the basic operations, and the 

meta-language are expressions in CLP(R), and the subclass of shape grammars 

contains those describable by the basic operations. Figure 5-23 shows an example of 

a shape rule. 

point Jace operator: pulling a surface out into a point, 
correctly modifying the number of edges and vertices 
of the face. 

point_face(Face, Height):-
face_eh(Face, Eh), 
ccw_eh(Eh, LastEh), 
edgeh_v(Eh, V), 
face_normal(Face, Normal), 
face_center(Face, Center), 
mev(V, LastEh, VTop, EhBt), 
other_eh(EhBt, EhTb), 
scalar(Height, Normal, Direct), 
vecplus(Center, Direct, CTop), 
set_vertext(VTop, CTop), 
point_face_l(LastEh, Eh, VTop, EhTb). 

point_face_l(EndEh, EndEh, _, _ ) . 
point_face_l(EndEh, Eh, VTop, EhTb):-

cw_eh(Eh, NextEh), 
edgeh_v(NextEh, V), 
v_coord(V, C), 
mefl(V, Eh, VTop, EhTb, NewEhBt, _, _ ) , 
other_eh(NewEhBt, NewEhTb), 
point_face_l(EngEh, NextEh, VTop, NewEhTb). 

Figure 5-22: The point _face operator 
Adapted from (Heisserman and Woodbury, 1993) 

4> 
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A rule for adding the second floor to a room. 

d e s c r i p t i o n ( q a _ l 6 , 'Add the second f loor t o a r o o m . ' ) . 

lhs(qa_16, [Top, Height, Room], [Room]):-
s t a t e ( s e c o n d ) , 
label(Room, name, S) , 
member(S, [room, p a r l o r , k i t chen , d in ing , h a l l , pant ry] 
not(label(Room, mark, s t a c k e d ) ) , 
top(Top, Room), 
room_height(Height) . 

rhs(qa_16, [Top, Height, Room]):-
s tack_so l id (Top, Height, NewRoom), 
make_label(Room, below, NewRoom), 
make_label(NewRoom, f loor , second) , 
room_color(RColor), 
set_solid_color(NewRoom, RColor). 

Figure 5-23: A rule for adding the second floor to a room 
Adapted from (Heisserman and Woodbury, 1993) 
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Chapter 6 Development of 
computation-friendly shape 
grammars 

The development of a computation-friendly shape grammar is tied to a particular 

sub-framework in the general paradigm; that is, the shape grammar can be described 

by the meta-language supported by the underlying data structure of the 

corresponding sub-framework. In this chapter, I will use an example showing the 

details of developing a computation-friendly shape grammar. The sub-framework 

chosen is the rectangular sub-framework. The grammar to be designed is for the 

Baltimore Rowhouse (Hayward, 1981; Hayward and Belfoure, 2005), which is a 

target environment of the AutoPILOT project. To show contrast, this chapter starts 

with a shape grammar developed in the traditional way; this part is based on the 

work of Casey Hickerson (a team member on the AutoPILOT project). Then, the 

grammar will be modified (improved) to be computation-friendly. As a matter of fact, 

such a development procedure can serve a pattern (or strategy) for developing 

computation-friendly shape grammars in general; the traditional development stage 

focuses on capturing the target style, and computation-friendly modification focuses 

on the underlying computational characteristics. 
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6.1 The Baltimore rowhouse 

The rowhouse become the dominant house type of Baltimore since its adoption in the 

eighteenth century (Hayward and Belfoure, 2005). Rowhousing exists in other 

American cities like Boston, Philadelphia, New York, Richmond, and St. Louis; but 

few are like Baltimore in that the city's spirit and identity are closely tied to this 

architectural form, whence the name — the Baltimore Rowhouse. The rowhouse had 

been persistently and tirelessly developed across two centuries, blossoming with the 

prosperity prior to World War II, suffering from the discrimination of postwar 

planners, and their recent redemption as humanely scaled housing. The two-story, 

three-bay house was an English invention in the beginning, plain in design without 

useless ornamentation, representing an efficient development policy that proved 

viable over decades of use. Then, this house form had been modified across time to 

meet the needs of different population groups of the city. Those for the wealthy were 

architect-designed; those for everyone else were built on speculation and, for the 

most part, designed by the builders themselves. To attract customers, and to make 

their product stand out among the thousands of rowhouses available, builders kept up 

with the latest styles, making modifications to cornice designs, window treatments, 

and the brick facade itself, adding bay windows, peaked roofs, stick-style porches, 

and carved or modeled embellishments. Across two centuries, the rowhouse history 

of Baltimore involves both changes and lack of changes; the changes relate the 

development of the city, and the lack of changes forms the style of the Baltimore 

Rowhouse. 

6.2 Creation of a shape grammar 

The process of creating a shape grammar to describe an existing set of designed 

objects involves three fundamental tasks: i) identifying the set of design patterns that 

most succinctly constitutes those objects, ii) formalizing those patterns as a set of 

shape rules, and iii) organizing the shape rules so that the grammar generates as 

many valid designs as possible while producing as few invalid design as possible. 
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To find patterns within a set of designed objects, one must look toward 

examples. Still, one cannot understand the process used to design a set of objects 

from examples alone. One first needs to understand the factors that motivate the 

design process. Having this information helps to identify the minimal set of design 

patterns that characterizes the design process. 

After identifying the patterns, one translates these patterns into a set of shape 

rules. The goal of this step in the process is to use as few rules as possible to create 

as many valid designs as possible while keeping the rules as simple as possible. 

Although how well a grammar meets this goal could be a subjective matter, it is 

usually not so hard to identify the better one from candidate solutions. For example, 

to generate a configuration with front and back divisions and a stair (solid grey) in a 

connecting hallway (Figure 6-la), the rule of Figure 6-lb is obviously too 'heavy', 

which is usually discouraged. On the other side, using rule of Figure 6-lc first, and 

then rule of Figure 6-Id, is a much better solution; the former splits the blocks, and 

the latter adds a staircase. Note that the rule of Figure 6-lc may still need to be 

decomposed into 'lighter' rules. 

(a) (b) 

J I I • - • 
(c) (d) 

Figure 6-1: Identification of the better solution between two 
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Generative rules are created to build 'on top of one another' so that a starting 

shape, e.g., the undivided building block, can be transformed into a possible 

configuration using a sequence of rule applications. At present, one cannot always 

determine a priori whether a grammar correctly generates all valid objects of a type; 

likewise, one cannot always determine a priori whether a grammar creates valid 

design objects. As a result, one generally evaluates the validity of a shape grammar 

through trial and error: applying every possible sequence of rules to the initial shape. 

In reality, the number of configurations generated by a sufficiently powerful 

grammar is so large that one cannot test every possible design. Still, an astute 

observer (or a trained grammarist) might reasonably determine whether a grammar is 

likely to be valid. Note that the above observation agrees with the conclusion made 

in Section 2.3.5 that the problem of parsing a configuration against a shape grammar 

is computationally unsolvable in general. 

6.3 A traditional rowhouse grammar 

There are two main resources used to develop the rowhouse grammar: the article 

Urban Vernacular Architecture in Nineteenth-Century Baltimore by (Hayward, 

1981), and the monograph The Baltimore Rowhouse by (Hayward and Belfoure, 

2005). The former serves as the primary basis, providing the detailed information 

about the rowhouse morphology; the latter is auxiliary, providing a more detailed 

discussion of the cultural factors that have influenced the morphology. Limited by 

the information available, the focus is on the configuration of the first floor, while 

the mechanism applies the grammar development for other floors. Figure 6-2 shows 

a set of rowhouse samples from the Federal Hill district of Baltimore, and Figure 6-3 

shows the photographs of some samples. 

6.3.1 Abstract shape representation 

To identify the patterns of the rowhouses, a shape representation (Figure 6-2) is 

adopted. The shape representation of a plan is essentially an abstracted form of the 

actual plan. The shape representation emphasizes topological information about a 

plan, e.g., the relationship between spaces, rather than the details of the building 
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itself. Spaces are simplified for clarity while some building features, e.g., wall 

thickness, are more-or-less eliminated. 

The difference between this representation and that used by other shape 

representations is the addition of icons to present features. Pertinent exterior features 

are represented through graphic conventions: a window is represented by a blue 

circle; a door, by a hollow green rectangle; a fireplace as a solid red rectangle; and a 

staircase as a solid grey area. Interior features, such as doorways between rooms, are 

shown in the shape representations as dashed lines. For the purpose of layout 

determination, other interior features are not incorporated here. 

(a) 821 South Charles Street (b) 43 East Hamburg Street 
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DttttttQ ftXfffl 

(c) 21 East Wheeling Street (d) 1028 Patapasco Street 

©aw&s re&n 

Dining room 

(e) 401 Grindall Street (f) 1029 South Hanover Street 
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OOWmgj mem 

H^J-OO-1 

(g) 208 East Montgomery Street (h) 236 East Montgomery Street 

r: —Di 

(i) 14 West Cross Street (j) 819 South Charles Street 
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m 

(k) 3 East Montogomery Street 

Figure 6-2: The shape representation of rowhouse samples 

* <w\ i f* 3NS 

I 

(a) 1-11 East Montgomery Street (1 is on the right) 
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(b) 202-208 East Montgomery Street 

* -irtt * nut . . . **- :-

(c) 815-829 South Charles Street (815 is on the left) 
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(d) 3-25 East Wheeling Street 

Figure 6-3: Photos of sample rowhouses 
Adapted from (Hayward, 1981) 

6.3.2 Variation in interior configuration 

As presented in Hayward's article, the rowhouses of Baltimore show little 

morphological variation. The lack of significant variation is clearly visible when 

comparing three buildings of Figure 6-2a~c. 

The building of Figure 6-2a, located at 821 South Charles Street, was 

constructed in 1818 and is of the 'two-and-a-half-story federal style'. The building of 

Figure 6-2b, located at 43 East Hamburg Street, was constructed in 1838 and is of a 

later variation of the federal style. The building of Figure 6-2c, located at 21 East 

Wheeling Street, was constructed in 1850 and is of the 'two-story-plus-attic Greek 

revival style'. Although these three buildings were constructed during decades apart 

from one another and are of nominally distinct styles, each follows the same basic 

plan. 
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This does not suggest that rowhouses show no variation whatsoever. Rather, the 

variation they show is fairly uniform and follows well-defined patterns. For example, 

we can identify at least five major variations across the entire corpus: 

(i) For safety and convenience, rowhouses are divided into two blocks: a main 

block toward the street and a kitchen block toward the rear (Figure 6-4). The two 

blocks may be directly adjacent to one another, as diagrammed on the left, or they 

may connect to one another through a short corridor, as diagrammed on the right. 

Figure 6-4: Block configurations 

(ii) The main block of a rowhouse is two or three bays wide (Figure 6-5). A bay, 

in this context, is defined by a single window or door on the front facade. In a two-

bay-wide house, as diagrammed on the left, the front door enters directly into a 

parlor. In a three-bay-wide house, as diagrammed on the right, the front door enters 

into a hallway, which is directly adjacent to a parlor. 

HD—O—' LD-L0-OJ 

Figure 6-5: Width configurations 

(iii) The main block of a rowhouse is one or two rooms deep (Figure 6-6). In a 

two-room-deep main block, as diagrammed on the left, the front room is a parlor and 

the back room is a dining room. In a one-room-deep main block, as diagrammed on 

the right, the parlor may serve as a dining room. 
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L Q J - O - C H L-CH-O-O-1 

Figure 6-6: Depth configurations 

(iv) The main staircase can exist in an assortment of locations within a rowhouse, 

diagrammed below (Figure 6-7): a) in the parlor, toward the back of the house; b) in 

the dining room, toward the front of the house; c) between the dining and parlor; d) 

in the hallway, occupying its entire width; e) in the hallway, toward the outer side of 

the house; and f) in die kitchen block, toward the front of the house. 

HD-kXH 

Figure 6-7: Stair configurations 

(v) Rowhouses can follow an assortment of story and basement configurations: a) 

two full stories, but no attic or dormer story; b) two full stories and a dormer story; c) 

two full stories and an attic; d) with a full basement, partially underground; e) with a 

full basement, entirely underground; and f) with no basement. 

6.3.3 Patterns identified 

The following are patterns identified: 

Division between main block and kitchen block 

• Front and back portions connected by a mutual wall - more common 

(Figure 6-2a~f, i~k) 

• Front and back portions connected by a corridor - less common (Figure 

6-2g,h) 
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• Isolated front portion - relatively rare 

Overall width 

• Two bays width - more common (Figure 6-2a~e, g, i, j) 

• Three bays width - less common (Figure 6-2f, h, k) 

Entryway configuration 

• Enter into the parlor - all two-bay-wide houses follow this pattern (Figure 

6-2a~e, g, i,j) 

• Enter into a dedicated hallway that runs full depth of the front block 

(Figure 6-2h, k) 

• Enter into a dedicated hallway that runs partial depth of the front block 

(Figure 6-2f) 

Location of dedicated dining room 

• In main block - more common (Figure 6-2a~f) 

• In kitchen block - less common (Figure 6-2g~h) 

Depth of front portion 

• One space deep - a parlor (Figure 6-2g~h), or a combined parlor and 

dining room (Figure 6-2i~k) 

• Two spaces deep - a parlor and a dining room (Figure 6-2a~c) 

• Three spaces deep - a parlor, a dedicated stair, and a dining room (Figure 

6-2d~f) 

Stair location 

• In the front division 

o On the other side of the front entrance 

• Between the separate parlor and dining room (Figure 6-2d~f) 

• Within a combined parlor and dining room, toward the back 

(Figure 6-2i) 

• Within separate dining room, toward the front (Figure 6-2a~c) 

o On the same side of the front entrance 
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• In the hall way (Figure 6-2k) 

• In the back division 

o Within the kitchen, toward the front (Figure 6-2j) 

• In the connection between front and back 

o On the same side as the front entrance (Figure 6-2g~h) 

Stair shape 

• U-shaped (Figure 6-2a~f, i) 

• L-shaped (Figure 6-2g~h, j) 

• Straight, bound by a wall on one side (Figure 6-2k) 

Above-ground floor variations 

• Two stories (Figure 6-2d, e) 

• Two full stories and a 'half dormer story (Figure 6-2a, b, j , k) 

• Two full stories and an attic (Figure 6-2c, i) 

• Three stories (Figure 6-2g, h) 

Style 

• Federal (Figure 6-2a, b, d, j , k) 

• Greek Revival (Figure 6-2c, g) 

• Italianate (Figure 6-2e, f, h) 

Note that, of all the different patterns visible within the rowhouse, stairs present 

the most intriguing set of combinations. In general, stairs exist in a distinct space that 

can take one of two forms, a literal room, separated from other rooms by walls, or in 

a 'phenomenal' room, which exists within a literal room and is defined by the stair 

itself. Within the shape representation (Figure 6-2), the boundaries of phenomenal 

rooms are designed with dotted lines. 

6.3.4 The rowhouse grammar 

The Baltimore Rowhouse grammar consists of 52 shape rules that generate first floor 

configurations with features of stairs, fireplaces, windows, exterior doors and interior 

doors. Rules are organized into phases, progressing from the major configurations 
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that constrain the design process to minor configurations that follow logically from 

other configurations, namely: I) Block generation: rules 1~4; II) Space generation: 

rules 5~7; III) Stair generation: rules 8-17; IV) Fireplace generation: rules 18~22; V) 

Space modification: rules 23-24; VI) Front door and window generation: rules 

25-29; VII) Middle and back door, and window generation: rules 30-39; and VIII) 

Interior door generation: rules 40-52. 

Rules are marked as either required (req) or optional (opt). Required rules must 

be applied if applicable while optional rules may be applied at the interpreter's 

discretion. The decision whether to apply an optional rule directly impacts the 

overall design. In effect, the final design is determined by the set of optional rules 

that were applied. Whenever a rule is applied, it must be applied exhaustively; that is, 

the rule must be applied to every subshape that matches the rule's left-hand-shape. 

Finally, rules must be applied in sequence: after Rule x has been applied 

exhaustively, only Rules x+1 and greater may be applied. 

Like other shape grammars, labels are used in two ways: to control where shape 

rules may apply, and to ensure that mutually exclusive rules cannot be applied to the 

same design. Spaces and stairs are labeled with two or three characters that indicate 

the general location of the space or stair within the house. For instance, Rfb indicates 

a room in the front block of the house that is oriented toward the back, a dining room. 

Wall labels are always of the form x(y) where x is a label for a space that the wall 

bounds (or P in the case of certain perimeter walls) and y is a one letter code 

indicating the side of the space the wall defines. For example, the front wall of the 

room labeled Rfb is labeled Rfb(f). Within some rules, variables are used to match 

more than one label: the character * matches any string of characters while the 

string!* | y} matches the strings x or y. Boolean global labels are used to ensure that 

mutually exclusive rules are not applied with default value false. Figure 6-8 shows 

all the shape rules. A sample derivation is given in Figure 6-9. 

Phase I: Block generation 

1) Generate the front block 

2) Mirror the front block 
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3) Generate the back block 

4) Generate the middle block 

Phase II: Space generation 

5) Generate a hallway in the front block 

6) Generate two spaces within the front block 

7) Generate two spaces within the back block 

Phase III: Stair generation 

8) Generate stair at the back wall of a single-space front block 

9) Generate stair between the two spaces of a double-space front block 

10) Modify the stair generated by Rule 9 if it runs the entire house width 

11) Generate partial-width stair in the front hallway 

12) Generate full-width stair in the front hallway 

13) Generate stair in the middle block 

14) Generate stair at the front of a single-space back block 

15) Generate partial-width stair between the two spaces of a double-space 

back block 

16) Generate full-width stair between the two spaces of a double-space back 

block 

17) Generate accessory stair on the back wall of the back room of a back 

block 

Phase IV: Fireplace generation 

18) Generate required front-block fireplaces 

19) Generate optional front-block fireplaces 

20) Generate back-block fireplaces 

21) Generate back-block fireplaces on the back wall 

22) Generate back-block fireplaces on a side wall 

Phase V: Space modification 

23) Modify the back room of a front block if the front hallway does not 

adjoin the middle or back block 

142 



www.manaraa.com

24) Generate a service stair behind a partial-width stair in the front hallway 

Phase VI: Door and window generation 

25) Generate a hall way in the front of the back block, removing the 

fireplace 

26) Generate the exterior door into the front hallway of a three-bay 

configuration 

27) Generate an entry vestibule in the front hallway of a three-bay 

configuration 

28) Generate the front windows of a three-bay configuration 

29) Generate the front door and window for a two-bay configuration 

Phase VII: Middle and back door, and window generation 

30) Generate a window on the back wall of the front block 

31) Modify the number of windows on the back wall of the front block from 

one to two 

32) Generate an exterior door into the middle block 

33) Generate a window in back-block spaces 

34) Modify the number of windows in back-block spaces from one to two 

35) Modify the number of windows in back-block spaces from two to three 

36) Generate an exterior door on the side wall of the back-most space when a 

stair is present on the back wall 

37) Generate an exterior door on the 'right' side of a back wall 

38) Generate an exterior door on the 'left side of a back wall 

39) Generate an exterior door in a back block with partial-width stair 

Phase VIII: Interior door generation 

40) Generate interior doors connecting the front, middle and back blocks 

41) Generate an interior door connecting front hallway and back block when 

there is no middle block 

42) Generate an interior door connecting front and back blocks when a stair 

is present on the front wall of the back block 
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43) Generate a left-side interior door connecting the front and back blocks 

when there is no middle block or front hallway 

44) Generate a right-side interior door connecting the front and back blocks 

when there is no middle block or front hallway 

45) Generate an interior door between the front and back spaces in the front 

block 

46) Generate interior doors between a front space and front hallways when 

the front block contains two divided hallways (This occurs when the 

front hallway contains a full-width stair and when the front block 

contains a separate service stair.) 

47) Generate asymmetric interior doors between the hallway and spaces in 

the front block 

48) Generate symmetric interior doors between the hall way and spaces in 

the front block 

49) Generate interior doors when the back block has a hallway 

50) Generate an interior door between the front and back spaces in the back 

block 

51) Generate interior doors between front, middle and back spaces in the 

back block 

52) Generate an interior door between adjacent front hallways (after Rule 46) 
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Figure 6-9: Derivation of 236 East Montgomery Street by the old rowhouse grammar 

6.4 A new computation-friendly rowhouse grammar 

In many aspects, the above grammar is not computation-friendly. As with many 

other traditional shape grammars, the focus is on generating all possible designs 

while leaving the conditions that apply to shape rules not fully specified. This 

becomes particularly evident when applying shape grammars to determine building 

interior layouts. A building feature input posits constraints over possible layouts, 

which further posits constraints on which shape rules apply, through comparing the 

conditions of the shape rules against the available constraints in the current 

configuration. 

In order to apply the rowhouse grammar to determine the interior layout from 

the feature inputs of a rowhouse, a new computer-friendly version of the grammar 

has to be developed. For convenience, the traditional rowhouse grammar is named as 

the old rowhouse grammar, the new rowhouse grammar for the computer-friendly 

version. To focus on how to make a traditionally designed shape grammar 

computation-friendly, we consider only a subset of the corpus, namely, working-

class rowhouse, excluding large, luxurious rowhouse, which are considered in the 

original grammar. Unlike their luxurious counterparts, a working-class rowhouse 

usually have a unique staircase on the first floor. Figure 6-2 actually shows all cases 

under consideration. Note that the mechanism of generating fireplace is essentially 

identical to generating interior doors or staircases. Therefore, we omit the shape rules 

for generating fireplaces. Moreover, for layout determination, as the feature inputs 

include windows and exterior doors, rules relating to generating windows and 

exterior doors are not considered here. A computation-friendly shape grammar needs 
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to specify the allowable transformation. In the new rowhouse grammar, the 

allowable transformation is translation, horizontal reflection, or combination. Under 

the context of interior layout determination, instead of a point on a two-dimensional 

Cartesian coordinate system, the initial shape is a shape from the pre-processing of 

the feature inputs, in particular the footprint. To be exact, the initial shape contains a 

list of rectangular blocks, as well as the 2D bounds of windows and doors. Such an 

initial shape helps avoid the complexity of pruning and fixing of the underlying 

layout tree (see Section 7.7.2 for a detailed explanation). As with the original 

grammar, rule application is sequential. Table 6-1 shows the details of the new shape 

rules; in particular, the rightmost column shows the description of the corresponding 

shape rule in the format of meta-language. Figure 6-10 shows a sample derivation of 

the new rowhouse grammar. 

Feature 
input 

Rbs 

Hm 

Rfs 

Rbb, 

Rbf 

Hm h 

km Rfs 

Rbb 

Rbf 

Hm 

m Rfs 15 

Rbb 

Rbf 

mfl 

M Rfs 

Figure 6-10: Derivation of 236 East Montgomery Street by the new rowhouse grammar 
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The new shape grammar comprises five phases: block (mass) generation (rule 

1-4), space generation (rule 5-10), stair generation (rule 11-16), space modification 

(rule 17-20), and interior door generation (rule 21-26). 

A significant difference between the new and original shape grammars is that 

every shape rule of the new shape grammar quantitatively specifies the conditions 

that apply. For example, this condition can be the number of spaces in terms of 

blocks (rules 1 and 2), a value in a specific range (rules 5 and 6), and a relationship 

of two or more values (rules 7 and 8). Some conditions are straightforward. Others 

require not only reasoning based on common design knowledge, but also certain 

threshold values, statistically determined. The following illustrates the complexity, 

using as exemplar, of the rules for generating staircases. 

Firstly, rules (rule 11-16), in the form of the original shape grammars, are not 

necessarily exclusive to one another. For example, to those layouts with room Rfs 

and Rbs, where no exclusive condition has been specified as to when to apply each 

rule, both rules 11 and 16 can apply. As stated previously, we currently only consider 

working-class rowhouses, each with a unique staircase on its first floor. Therefore, 

for each layout, only one of the shape rules for generating staircases applies. 

Secondly, if there is a staircase room SfS, then rule 12 has to apply. As a result, 

an implicit condition for Rule 11, 13, 14, 15, and 16 is that the current layout has no 

staircase room SfS. 

Rule 14 adds a staircase to a hallway. Obviously, the hallway needs to be wide 

enough to hold the staircase, hence the width of the front block. From the samples 

(Figure 6-11), 18 feet is a good threshold value to distinguish whether or not rule 14 

can apply. To ensure the exclusive application of rule 14, an implicit condition for 

rules 11, 13, 15 and 16 is mat the width of the front block is smaller or equal to 18'. 
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Width of the front blocks 

With staircase 

Without staircase 

Figure 6-11: Quantifying the shape rules generating staircases 

For rules 11, 13, 15, and 16, if there is an Rfb room in the layout, then rule 13 

should be applied to add a staircase there. Accordingly, an implicit condition for rule 

11, 15 and 16 is that there is no Rfb room. For rules 11, 15, and 16, if there is a 

middle block Hm, rule 15 should be applied to add a staircase in the middle block. 

Thus, an implicit condition for rules 11 and 16 is that there is no Hm room. 

It remains to distinguish between rules 11 and 16. The implicit conditions added 

by rules 12, 13, 14, and 15 can be summarized as: if there are only a Rfs room (the 

front block) and a Rbs room (the black block) in the current layout, then possibly 

rules 11 and 16 can be applied. Rule 16 adds a staircase to an Rbs room, which is 

actually a kitchen. Therefore, the kitchen space has to be large enough to hold a 

staircase as well as function as a kitchen. In the sample available, only one uses rule 

11 and one uses rule 16. Because of this, the related statistical data for all samples is 

computed as a reference: the average area of kitchens without a staircase is 127.7 

feet2, the minimum is 92.8 feet2, and the maximum is 185.4 feet2. The area of a 

staircase is about 26-30 feet2. The kitchen area of the case that uses rule 11 is 94.4 

feet2, and the kitchen area of the case that uses rule 16 is 165.5 feet2. The average of 

these two cases is about 130 feet2, which is close to the average of kitchens without 
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staircases. So, 130 feet is used as the threshold value. As a result, an added 

condition for rule 16 is that the area of kitchen is greater than 130 feet2. An 

additional condition for rule 11 is that the area of the kitchen is smaller or equal to 

130 feet. Table 6-2 gives a summary of implicit conditions to make rules for 

generating staircases exclusive. 

Table 6-2: Implicit conditions to make staircase rules exclusive 

Rule 12 

Rule 14 

Rule 13 

Rule 15 

Rule 16 

Rule 12 

With 'SfS' 

Rule 14 

No 'SfS' 

Front block 
width > 18' 

Rule 13 

No 'SfS' 

Front block 
width < 18' 

With 'Rfb' 

Rule 15 

No 'SfS' 

Front block 
width < 18' 

No 'Rfb' 

With 'Hm' 

Rule 11 

No 'SfS' 

Front block 
width < 18' 

No'Rfb' 

No'Hm' 

Kitchen 
< 130 ft2 

Rule 16 

No 'SfS' 

Front block 
width < 18' 

No'Rfb' 

No 'Hm' 

Kitchen 
> 130 ft2 
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Chapter 7 Layout tree pruning 
and initial layout estimation 

The basic research task of the AutoPILOT project is to employ a shape grammar to 

determine the interior layout of a building from its feature input. Although a 

computer implementation of the shape grammar is capable of enumerating all 

possible layouts within the language space (in this context, the layout space) of the 

shape grammar, it still remains to make connections between the layout space and 

the feature input so that those layouts consistent with the feature input can be 'picked 

out'. In this chapter, related techniques, in particular, layout tree pruning and initial 

layout estimation will be discussed through two test cases: the Baltimore Rowhouse 

and the Queen Anne House. Note that building input features used in this chapter are 

simply taken from existing drawings from either (Flemming et al., 1985), for Queen 

Anne houses, or (Hayward, 1981) for Baltimore rowhouses. 

7.1 Layout tree pruning 

A computer implementation of a shape grammar that captures the corpora of a 

building style is essentially an enumeration of all possible layouts. The enumeration 

procedure, that is, the derivation of a shape grammar, can be viewed as a tree 

structure, namely, a layout tree. Valid layouts correspond to certain nodes of the tree. 
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These nodes are mostly leaf nodes, though certain internal ones are possible; an 

internal one is a layout of smaller size, while a leaf one is a layout of larger size and 

typically with more rooms. 

Accordingly, layout determination becomes a process of 'picking up' those 

nodes consistent with feature input from the layout tree. As it is generally difficult to 

do so directly, the pickup is typically achieved by tree pruning — eliminating those 

nodes inconsistent with certain constraints with the remnants being the desired 

results. 

Shape grammars capturing building corpora are typically parametric; that is, 

only 'topological' relationships are described, for example, which room is next to 

which other room under a certain condition, leaving the extract dimensions largely 

unspecified. As a result, many constraints for pruning a layout tree are necessarily of 

a topological nature, especially for those used to prune branches near the root of the 

layout tree. This makes it difficult to conduct tree pruning, as a feature input is for 

objects with real dimensions. A procedure to obtain topological constraints becomes 

necessary. As discussed later in this chapter, such topological constraints are mainly 

obtained through a process termed, initial layout estimation. This process makes use 

of building knowledge in the form of constraints on building features. 

What is more, the topological constraints cannot prune the tree in a way that the 

desired final layouts can be directly determined. Before reaching the final layouts, 

the variables (aka. parameters) in the intermediate configurations have to be 'fixed' 

to match the feature input at a certain stage, and the fixing process can be 

progressive or done in a single shot. Progressive fixing relies on the constraints, 

directly or inferred from the feature input, or from a priori knowledge, and 

parameters are partially fixed at each step until all are fixed. Parameter fixing of the 

Queen Anne houses is an example of progressive fixing. For parameter fixing in a 

single shot, control parameters are fixed in one step using a certain procedure. 

Parameter fixing of the Baltimore rowhouses is such an example. Note that, in this 

dissertation, parameter fixing of the Baltimore rowhouses has been implemented 

while parameter fixing of Queen Anne houses not. 
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7.2 Building feature constraints 

Building features constrain one another. For example, a window normally belongs to 

a unique room (space), no wall falls within a window; to be appropriate for use, the 

ratio of a room dimensions is usually Vr, and to be practically functional, the 

minimum width of a space is larger or equal than 2'. Other constraints require 

specific knowledge. For example, the height of each story is determined by window 

and door geometries (Figure 7-1). Moreover, once the height of a story is estimated, 

the dimension of various forms of staircase can be estimated through common 

dimension of treads and risers (24" < tread + 2 * riser < 25"), and the width of 

staircase is another constant (for example, usually 3' for houses) in a given context. 

Another example is the interaction between window and staircase. As shown in 

Figure 7-2, for windows with known positions, possible positions for the staircase 

are greatly reduced (the impossible region for a staircase is shaded based on the 

principle that no staircase will 'cross' a window in a sectional view). Together with 

further constraints from the surrounding rooms, the exact position of the staircase 

can be narrowed down to a small range. 

BBB 

C=3 • 

• Q 
CD E3 

DD 

Figure 7-1: Windows and doors constrain the height of each story 
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possible region possible region 

Figure 7-2: Window position constrains possible arrangements of a staircase 

7.3 Constraint satisfaction 

Determination of building interior layout is to identify all of the rooms within a 

building as well as their dimensions. A subset of such rooms is adjacent to the 

building's exterior. Accordingly, they correspond to a set of exterior features. For 

instance, most rooms in Queen Anne houses (Flemming, 1987) have centrally-

located fireplaces that correspond to chimneys visible over buildings' roof. The 

abundance of such constraints among exterior building features suggests that a 

preliminary layout could be found by treating it as a problem of constraint 

satisfaction (Russell and Norvig, 2002). 

A constraint satisfaction problem (CSP) has three components: i) a set of 

variables X = {xu ... , xn}, ii) a set of possible domain values, D,-, for each JC„ and iii) 

a set of constraints to restrict the values that variables can simultaneously take. 

Different acceleration techniques, for example, forward checking and constraints 

propagation are developed to eliminate impossible values efficiently, thereby 

speeding up solving the CSP. 

There are important benefits to treating a problem as a CSP: i) representation as 

a CSP is typically much closer to the original problem: variables directly correspond 

to problem entities and constraints can be expressed more explicitly without 

awkward translation; ii) representation as a CSP conforms to a standard pattern so 

that many algorithms can be written in a generic way; iii) effective, generic 

heuristics can be developed without requirements of additional, domain-specific 
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expertise; and iv) the structure of the constraint graph can be used to simplify the 

solution process, potentially leading to an exponential reduction in complexity. 

The CSP algorithm for initial layout estimation starts by generating rooms with 

conservative dimensions to accord with the given features. The algorithm then 

manipulates rooms as variables according to constraints established by common 

building properties. Two kinds of manipulations are considered: expanding room 

dimensions and merging two rooms into one. Note that merging two rooms eliminate 

a variable initialized at the beginning; this stands in contrast to typical CSP 

algorithms where variables persist throughout the life of the algorithm. 

7.4 CSP and Queen Anne houses 

Figure 7-3 shows the results of applying the CSP algorithm to the first floor of a 

Queen Anne house—5816 Walnut Street in Pittsburgh, Pennsylvania. Input features 

are locations in plan of the windows, doors, and chimneys, together with possible 

symmetry axes inferred from the facades. Note that in Queen Anne houses chimneys 

vertically correspond to fireplaces on the first floor. Step 1 extends the axes of 

exterior wall inward (assuming a wall thickness of 1') to form wall hotspots; this 

enforces a tendency of interior rooms to be aligned with one another. Step 2 uses the 

fact that larger public rooms on the first floor have fireplaces, which corresponds to 

the chimneys. By projection, if the chimney falls within the interior of the footprint, 

then there are possible two rooms that share the chimney, with a fireplace each. If the 

chimney is on an exterior wall, only one room can use the chimney. Such rooms are 

assigned with an initial dimension of 8' x 8'. Step 3 adjusts rooms that are close 

(based on 1' threshold) so that they should align with the nearest axis. Step 4 uses the 

fact that rooms can contain, but do not intersect with other rooms and doors. Rooms 

are extended to include such features to resolve any conflict. Step 5 uses the fact that 

the minimum distance between two walls has to be large enough to be a useful space 

(usually > 3'). In step 6, rooms generated from the chimneys are stable. Step 7 

specifies rooms (5' x 5') to unassigned windows and doors. Note that a room may be 

left-, center-, or right aligned with a window or door. Two largely overlaying rooms 

are merged as one. Also, the narrow space remaining between RM1 and RM5 is 
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assigned to RMS according to the symmetry axis, SYM-4. Step 8 shows the final 

result; though incomplete, but it is close to the actual condition. At this stage, there 

are ambiguities that cannot be resolved without prior knowledge, which is left for the 

shape rules to handle. 

In the above example, the estimated rooms are restricted to rectangles. This can 

pose certain difficulties when evaluating buildings partially with non-rectangular 

rooms as demonstrated by 719 Amberson Avenue (Figure 7-4h). The strategy is to 

approximate the original non-rectangular rooms by rectangles, and project the related 

windows correspondingly. Such simplified approximations retain the necessary 

constraints introduced from the original window features, making constraint 

satisfaction applicable for a wider range, and greatly reduce the complexity in 

implementing geometric manipulation. Figure 7-4 shows both the original inputs 

(solid lines), and the simplified version (dashed line), as well as the manual 

derivation procedure based on these approximations. 

Figure 7-5 shows the results of the computer implementation of the above CSP 

algorithm. Besides the complexity of geometry manipulation, the implementation has 

to deal with potential numerical round-off and tolerance issues. For example, an 

intersection test between a rectangle (chimney) and a line segment (wall axis) is used 

to determine whether a chimney is on the boundary of a footprint or not. However, 

the chimney data is derived from the parts over the roof, whose dimension 

potentially shrinks. This may result that a chimney may be close enough to the line 

representing a wall, without actually intersecting or being coincident. Imperfect 

threshold value also causes issues. For example, as shown in Figure 7-4a, the 

assumption of wall thickness of 1' results two very close hotspot wall axes, which 

can break the algorithm if not handled specially. Moreover, different from the 

manual derivation, the rooms in the up-right corner of Figure 7-5b do not merge as 

desired due to the difficulty to set a 'universal' threshold value—a threshold value 

working for a build or a part of a building may fail for another building of the same 

style or another part of the same building. 
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layout estimation of Queen Anne houses by CSP 
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(e) Step 5 

(g) Step 7 (h) Step 8 

Figure 7-4: Manual layout derivation of 719 Amberson Avenue 

173 



www.manaraa.com

(a) 5 816 Walnut Street (b) 719 Amberson Avenue 

Figure 7-5: Results from the computer implementation of CSP 

The partial layout results from the initial layout estimation by CSP do provide 

useful topological constraints for pruning the layout tree. For example, in Figure 

7-5a, there are three rooms at the bottom side and their widths are determined. This 

converts to a topological constraint of three rooms at the bottom side. Moreover, the 

width parameters of these rooms can be fixed to those values, respectively. The three 

rooms on the left side can be used in a similar way. And the two partial rooms on the 

right side can convert to a slightly weaker topological constraint that there are at 

least two rooms on the right side with a determined width value. In Figure 7-5b, the 

two rooms on the bottom side have fixed width dimensions. For the left side, the 

dimension of the up-left room is fixed; otherwise, it is only sure that there are at least 

three rooms on that side. Similarly, there are at least two rooms on the upside. 

7.5 Other constraints on Queen Anne houses 

The number of topological constraints from the CSP algorithm may be insufficient to 

prune the layout tree so that it is necessary to introduce other types of constraints. As 

the hallway plays an important role in the Queen Anne grammar (Flemming, 1987), 

the determination of the hallway will help pruning by deciding the number of rooms 

on the front side of the house. 

174 



www.manaraa.com

According to (Flemming, 1987), Queen Anne houses can be classified into three 

categories based on the position and the shape of the hallway, namely, side hall, 

center hall, and corner hall. Table 7-1 is a summary of these three types. 

Table 7-1: Three types of hallways of Queen Anne houses 

Type 

Side hall 

Corner hall 

Center hall 

Front width 

1 Vi bays wide 

2 bays wide 

2 '/2 bays wide 

Feature 

Vi bay hall and 1 bay room 

1 bay hall and 1 bay room 

Vi bay hall, 1 bay room on the left and right, respectively 

Moreover, from a footprint, the hallway type can be distinguished by using the 

minimum distance from the center of the front door to the leftmost and rightmost 

side of the front part of the footprint (Figure 7-6), assuming the orientation of the 

footprint is so adjusted that the front door is at the bottom side. 

• For a side hall, the minimum distance d is equal to the half width of the 

hallway. Such a hallway is at most 8' width, thus d is at most 4'. 

• For a center hall, the minimum distance (d) is equal to the width of a front 

public room plus the half width of the hallway. A front public room is at 

least 10' wide, and the center hallway is at least 4' wide. Therefore d is at 

least 12'. 

• For a corner hall, the hallway becomes a hall room, and the minimum 

distance (d) is equal to the width of the hall room (one-bay wide) minus dj, 

which is the distance from the center of the front door to a wall of the hall 

room. It is trivial that the minimum distance d of corner hall is greater than 

side hall. However, it is much more subtle to distinguish a corner hall from a 

center hall. Let assume that d is at least 12', which is the same as the center 

hall. Since the di is at least 2', the hall room is at least 14' wide. Since the 

corner hall is usually a small public room, therefore such a hall room is 

highly unlikely in general. Therefore, we are pretty safe to conclude that the 

minimum distance d of corner hall is less than 12'. Overall, the minimum 
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distance d of comer hall is less than 12' and greater than 4'. As a result, if a 

footprint is neither a side hall nor a center hall, it should be a corner hall. 

-F=h -F=h Q -

(a) Side hall 

d, 

(b) Center hall 

d dj 

(c) Comer hall 

Figure 7-6: Determination of hallway types 

Likewise, other types of constraints can be further introduced if the constraints 

obtained so far are still insufficient to prune the layout tree and fix the configuration. 

7.6 Layout determination of Queen Anne houses 

The layout determination of Queen Anne houses is carried out in two steps: first 

implementing the Queen Anne grammar to generate a layout tree, and then pruning 

the layout tree by using the constraints from the initial layout estimation. 

Figure 7-7 shows the screenshot of the computer implementation. On the left, 

there are four small windows: i) the Truth window shows the true layout for 

comparison; ii) the Feature input window shows the feature input used for initial 

layout estimation; iii) the Derivation window shows the result of initial layout 

estimation by the CSP algorithm and is animated step by step; and iv) the Constraints 

window shows the constraints manually exacted from the partial layout results from 

initial layout estimation. On the right is the Grammar tree window. The top-left panel 

shows the layout tree generated by applying all the shape rules, in which those that 

are crossed out correspond to layouts inconsistent with the constraints extracted. The 

top-right panel shows the layouts remaining after pruning the layout tree by the 

extracted constraints. The central panel on the top is the drawing panel; when 
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clicking on entries of the top-right or top-left panel, the corresponding layout is 

displayed. The bottom is the status bar, displaying the summary of layout tree 

generation and pruning. Above the status bar is the rule panel, displaying all the 

shape rules for the Queen Anne grammar; when clicking on an entry of the layout 

tree, the current applicable shape rules are highlighted. 
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Figure 7-7: Screenshot of layout determination of Queen Anne houses 

7.6.1 Implementation of the Queen Anne grammar 

To obtain the layout tree of Queen Anne houses, it is essential to implement the 

Queen Anne grammar. The implementation is based on the rectangular sub-

framework. That is, a layout is represented by a graph-like data structure. In essence, 

the Queen Anne grammar just captures the topology of Queen Anne houses; that is, 

the grammar simply specifies the possible neighborhood of different room spaces, 

with little concern of room dimensions. 

The Queen Anne grammar described in (Flemming, 1987) is not really 

computation-friendly. In order to be converted to a piece of code, certain shape rules 

require additional constraints; others need to be de-compacted so that different 
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possibilities are clarified. For example, according to the diagram describing Rule 2 

(Figure 7-8a), it is applicable to both Figure 7-8b and Figure 7-8c. While the 

application on Figure 7-8b produces a reasonable layout, the application to Figure 

7-8c will produce a too small room. Note that, in general, dimension is not important 

in the implementation of the Queen Anne grammar. Yet, in order to eliminate such 

inappropriate cases, a certain sense of dimension has to be employed. 
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Figure 7-8: Application of Rule 2 

Another example is the interpretation of Rule 8 (Figure 7-9a). From the diagram, 

it seems that the two rooms have to partially overlap in order for this rule to apply. 

However, from the sample layouts shown in (Flemming, 1987), the case of Figure 

7-9b is applicable, as well. In a computation-friendly shape grammar, these two 

cases need to be described in the way shown in Figure 7-9 so that the implementation 

stage simply focuses on the task of coding. 
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Figure 7-9: Interpretation of Rule 8 

Figure 7-10 shows sample results generated by my implementation. Note that 

the layouts of Figure 7-10k and 1 are not valid in any practical sense as the top rooms 

are much too wide. However, there is no simple solution to eliminating such cases by 

putting constraints on shape rules themselves (that is, making them computation-

friendly). However, during the fixing step, unreasonable dimensions will be obtained 

for such rooms so that these layouts can be removed. As the fixing step is not 

implemented in the demo of this dissertation, instead, a post-processing step is 

implemented to remove those invalid layouts. In this implementation, there are 506 

unique layouts generated in total. 
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Figure 7-10: Screenshots of sample layouts generated by the Queen Anne grammar 

7.6.2 Layout tree pruning of Queen Anne houses 

As explained in Section 7.4, some simple topological constraints can be extracted 

from the partial layout results of the initial layout estimation. For the building of 

Figure 7-5a, the exacted constraints includes: i) the hallway is central, ii) the number 

of rooms at the left side of the hallway is at least 2, ii) the number of rooms at the 

right side of the hallway is at least 2 and at most 3, iii) there must be kitchen and 

staircase rooms at the right side of the hallway, iv) there is no dining room in the 

rooms which are right behind the hallway, and v) rooms behind the hallway are 

181 



www.manaraa.com

aligned with the hallway vertically. Figure 7-11 shows the results by pruning the 

layout tree with these constraints. Layouts of Figure 7-11 a, b and d are two layout 

results closest to truth; the deviation is due to the defects of Queen Anne grammars; 

the leftmost room on the top is a sun porch room, which is not so common in Queen 

Anne houses that the grammar does consider this special cases. Layouts of Figure 

7-1 lc and e are not quite right; these layouts can be removed when fixing the 

dimensions. 

(d) (e) truth 

Figure 7-11: Layout results of 5816 Walnut Street 

For the building of Figure 7-5b, the exacted constraints includes: i) the hallway 

is central, ii) the number of rooms at the right side of the hallway is 2, ii) the number 

of rooms at the left side of the hallway is at least 2 and at most 3, iii) there must be 

kitchen and staircase rooms at the left side of the hallway, iv) from the bottom, the 
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first two rooms are not staircase rooms, and v) when the lower left corner room is a 

dining room, the upper right corner room must be a parlor room; vice versa. Figure 

7-12 shows the results by pruning the layout tree with these constraints. Layout of 

Figure 7-12b is closer to the truth than layout of Figure 7-12a. Again, layout of 

Figure 7-12a can be removed when fixing the dimensions. 

(a) (b) truth 

Figure 7-12: Layout results of 719 Amberson Avenue 

7.7 Layout determination of Baltimore rowhouses 

The layout determination of Baltimore rowhouses is carried in only one step. It is an 

example in which the initial layout estimation happens to also prune all inconsistent 

results from the layout tree (Figure 7-15 and Figure 7-16). Layout determination then 

becomes, simply, rule application on the layout result from the initial layout 

estimation. 

Figure 7-13 shows the screenshot of the computer implementation. On top, the 

left window shows all the building samples of Baltimore rowhouses from a database, 

and the right window shows the shape rules. At the bottom, from left to right, the 

first window shows the tree structure of shape rule application. There is always one 

path in this window. Clicking on an entry in the tree structure, the corresponding 

shape rule applied will be highlighted in the shape rule window. The second window 

shows the true layout. The third window shows the layout generated. The fourth 
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window shows the feature input. The rightmost window shows the three-dimensional 

view by extruding the two-dimensional layout with certain default values. 

MKWwxgjnoKySi j : (!1iir5»EI<te»W»Mt«St 
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v" 

Figure 7-13: Screenshot of layout determination of Baltimore rowhouses 

7.7.1 Space subdivision tree and Baltimore rowhouses 

Theoretically, the implementation of the CSP algorithm should work for a variety of 

building types. However, it does not perform well on Baltimore rowhouses (Figure 

7-14) even though there is relatively little morphological variation when compared to 

the Queen Anne houses. The reason for this is that several assumptions that apply to 

Queen Anne houses do not apply to the rowhouses, for instance: i) spaces within 

rowhouses tend to be narrower and deeper than in Queen Anne houses; ii) spaces 

within rowhouses that contain fireplaces are not always symmetric about that 

fireplace. This is especially true for rowhouse kitchens; iii) fireplaces in rowhouses 

do not necessarily correspond to a chimney visible from the building's exterior; and 

iv) the simplicity of the typical rowhouse footprint makes it more difficult to infer 

interior wall axes from the footprint alone. 
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3 East Montgomery 43 East Hamburg 1029 South Hanover 208 East Montgomery 
Street Street Street Street 

Figure 7-14: Results of the CSP algorithm on Baltimore rowhouses 

As a consequence of the first two reasons, initial dimensions assigned to rooms 

with chimneys may fall outside the building's footprint. Moreover, the chimneys do 

not correspond directly to the fireplaces. Although it might be possible to modify the 

CSP algorithm to work with the Baltimore rowhouse by revising existing constraints 

and adding new types of constraints, another much simpler alternative was found, 

and is adopted. 
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Figure 7-15: Space subdivision tree of Baltimore rowhouses 

Procedurally, the first floor of the rowhouse can be determined by a decision 

tree (Figure 7-15)—essentially, as a subdivisive process. The first floor is typically 

decomposed into two or three rectangular blocks: a block containing a parlor towards 

the front, a block containing a kitchen towards the rear, and an optional, smaller 

central block that connects the two. In a three-block rowhouse, the central block 

contains a pantry or a stair, while the front and rear blocks are divided into one or 

two rooms. The kitchen is always the rear-most space while the parlor is the front-

most space. The dining room usually appears in the front block behind the parlor or 

in the rear block forward of the kitchen. The two cases can be distinguished by 

comparing the depths of the front {hi) and rear {hi) blocks. 
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Two-block rowhouses are more involved. Depending on the depth (ji) of the 

front block, it can contain a single room, or be divided into a parlor and dining room 

possibly separated by a staircase. If the front block comprises two rooms, the 

staircase can occupy an enclosed space or it can be open to one or both rooms. If the 

front block comprises a single room, the staircase may have multiple possible 

arrangements. These configurations are too complicated to be handled by the 

decision tree, which needs further refinement by using shape rules. 

Regardless of whether the layout has two or three blocks, the front door enters 

into the front-most room or a dedicated hallway. This is determined from the width 

(w) and area (s) of the front-most room. 

7.7.2 Layout tree pruning of rowhouses 

Figure 7-16 shows the layout tree of the old Baltimore rowhouse grammar. 

Noticeably, after applying the shape rules for several steps from the initial shape, the 

layout must be one of two shaded nodes or a horizontal reflection of the two. On the 

other hand, the initial layout estimation of Baltimore rowhouses by space subdivision 

reaches the same results after decomposing the footprint input into rectangles. Thus, 

all parameters can be fixed at this step, and the desired layouts are obtained simply 

by continually application of shape rules. For the new computation-friendly version 

(Section 6.4), the grammar is designed to start from the rectangular decomposition of 

the footprint input so that the parameter-fixing step is automatically handled. Figure 

7-17 shows sample results from the layout determination of Baltimore rowhouses; in 

each figure, the left is the truth, the middle is the layout determined and the right is 

the feature input. 
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Figure 7-16: The layout tree of the traditional Baltimore Rowhouse grammar 
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Figure 7-17: Layout results of Baltimore rowhouses 
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Chapter 8 Conclusion 

This thesis starts out with the problem of determining the interior layout of a 

building from its exterior features and tackles it with the help of a shape grammar 

that describes its underlying building style. The general approach adopted is based 

on the fact that the derivation of the entire language space of a shape grammar can be 

described by a tree structure. The general approach is supported and detailed by two 

test cases: the Baltimore Rowhouse and the Queen Anne House. 

Conversely, the research question serves as a vehicle to investigate shape 

grammars, in particular, the implementation of a parametric shape grammar 

interpreter. The difficulty involved leads to an analysis of the computational 

complexity of interpreting shape grammars, particularly, by taking advantage of 

formal languages and identifying factors influencing tractability. The conclusion is 

that the implementation of shape grammars can become, in principle, intractable. 

In practice, however, many shape grammars are special in a way in that they are 

tractable. That is, a practical, 'general' paradigm for implementing such parametric 

shape grammars can be and is considered. To ensure that shape grammars designed 

are tractable, the concept of computation-friendly shape grammars is introduced, for 

which there is a data structure, underlying manipulation algorithms and a meta

language for specifying shape rules. These three components together form a sub-
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framework and many such sub-frameworks constitute the 'general' paradigm. For 

such a 'general' paradigm, it is desirable to classify tractable shape grammars in way 

so that the total number of sub-frameworks is minimal. And in this way, a 

classification based on the underlying data structures is argued to be optimal. 

In this chapter, I conclude with an overview of the main contributions of this 

dissertation and an agenda for future research. 

8.1 Contributions 

The main contributions can be divided into two categories: those relating to the 

implementation of a parametric shape grammar interpreter and those relating to 

determining the interior layout of a building from its exterior image. 

The following are the contributions with regard to implementing a parametric 

shape grammar interpreter: 

• As corollaries from the fact that shape grammars are capable of simulating a 

Turing machine, three theoretical results are derived, which are significant 

for implementing a shape grammar interpreter, namely: a shape grammar 

may not halt; the language space of a shape grammar can be exponentially 

large; and the problem of parsing a configuration against a shape grammar 

(that is, the membership problem) is, in general, unsolvable. 

• A practical, 'general' paradigm for implementing tractable parametric shape 

grammars comprising a set of sub-frameworks one for each subclass of shape 

grammars. Classifying shape grammars by the underlying data structures is 

argued to be optimal. 

• Three exemplar sub-frameworks are described. These include the rectangular 

sub-framework based on space partitioning and space aggregation; the 

polygonal sub-framework based on polygonal subdivision .using cutting 

polylines; and a graph sub-framework based on graph transformation. For 

each there is a description of the data structure, basic manipulation 
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algorithms, and meta-language used in describing shape rules so that further 

code translation can be easily carried out. 

The following are the contributions with respect to determining the interior 

layout of a building from exterior image data: 

• A general approach for determining the interior layouts of buildings 

describable by shape grammars by using their exterior features as input. 

• A realistic pipeline for semi-automatically extracting building features from 

image data together with the details of the necessary algorithms. 

8.2 Future research 

To fully apply to practice the results of the research in this dissertation, the following 

additional research are essential: 

• Implementing a common platform for the 'general' paradigm 

The practical, 'general' paradigm for implementing parametric shape 

grammars should rely on a common platform so that all sub-interpreters serve 

as Add-ons, which can be developed independently (Section 4.3). However, 

the implementation of such a common platform is a significant endeavor, 

which would need the efforts of a research team. 

• Implementing a realistic pipeline for building feature extraction 

A realistic pipeline which is capable of semi-automatically extracting 

building features from image data is described in Section 3.4 and left 

unimplemented. An implementation of such a pipeline will benefit other 

similar projects, which require the features of existing buildings as input. It 

would be preferable for such an implementation to be independent and 

transparent so that it can be easily revised to fit the special needs of a target 

project. 

The research in this dissertation covers topics from a wide spectrum, which can 

also leads to other avenues of further research: 
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• Ontology-backed shape grammars 

In the manner by which they are developed, shape grammars tend to capture 

knowledge common to a set of buildings based on a subset of building 

samples. In this respect there are similarities to machine learning techniques 

(Mitchell, 1997). However, the development of a shape grammar is 

essentially manual, and as such, lacks a mechanism of learning on the fly. 

Moreover, as described early, during conversion from a traditional shape 

grammar to one that is computation-friendly, a number of values are 

manually computed from building samples. The central notion is that certain 

aspects of shape grammars could be dynamically updated when updating 

ontology related to subject domain of the grammars. This is similar to 

learning on the fly. 

It is clear that more research is required, and research into building 

ontology provides a new opportunity. Building ontology (Grobler et al., 2008) 

captures knowledge about the design of particular building types. Features of 

a building that relate to design include size and dimensions, surrounding area, 

facade treatment, circulation and movement patterns, form, structure, 

materials, etc. The ontology can be used to describe the relationships between 

these elements, as well as the social, cultural, and environmental factors. 

Such ontology can be used to back up both the development and 

quantification of shape grammars. By building a link between shape 

grammars and a corresponding ontology, we may be able to dynamically 

update the shape grammar developed. For example, the threshold value of 

Figure 6-11 can be just a compound query to a building ontology, and such a 

value could be updated automatically whenever new building samples are 

added into the building ontology. This idea points to a new research direction: 

of particular interest is the re-development of existing shape grammars based 

on building ontology and with it establish comparisons with the existing 

grammars; another is to examine mechanisms for creating a dynamic link 

between shape grammars and a building ontology. 
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• Parsing a configuration against a shape grammar 

It has been shown that the membership problem, that is, parsing a 

configuration against a shape grammar, is in general unsolvable. This is 

analogous to the membership problem for the unrestricted grammar in the 

field of generative grammars. However, there are also special classes of 

generative grammars, for example, context-free grammars, which can be 

parsed. The question of whether shape grammars can be similarly restricted 

so that a particular subclass of shape grammars can be parsed remains open. 

• Equality of pattern books and shape grammars 

In this dissertation, the focus is on buildings describable by shape grammars 

(Section 1.2). However, the exact scope that this focus covers is still an open 

question. That is, can all buildings describable by pattern books also be 

describable by shape grammars? Moreover, if we restrict the class of 

buildings to those that have been constructed, and further, if we were to 

reverse engineer the assembly of their construction processes, we might be 

able to provide a pattern book description for their designs. The question then 

becomes whether or not, most typical buildings can be described by certain 

kinds of pattern books? These questions require substantive further research. 

• Extending the computation-friendly concept to sorts 

Sorts is a concept based on the recognition mat there is always a need for 

different representations of the same entity, albeit a shape or some other 

complex attribute (Stouffs and Krishnamurti, 1997). Conceptually, a sort 

specifies a set of similar models; sorts combine to form new sorts under 

operations closed within an algebra based on a part relationship. Common 

arithmetic operations between sorts including subsort (<), sum (+), product 

(•), difference (-) and Cartesian product (X) (Stouffs and Krishnamurti, 

1998). The definition of a sort includes a specification of the operational 

behaviour of its individuals for common arithmetic operations. The 

foundation for sorts is an algebraic model for shapes (Stouffs, 1994) that 

offers a uniform and consistent approach for dealing with geometries of 
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mixed-dimensionality and is extended to non-spatial attributes using common 

arithmetic operations of sum, difference and product. In a curious twist, sorts 

originated from weighted shape grammars (Stiny, 1992), and then extended 

to shaped weights and other weighted generalizations. The basic mechanisms 

for shape grammars and sorts are 'isomorphic' — that is, both achieve a goal 

by a set of basic polymorphic operators. As a result, the analysis of factors 

influencing tractability of shape grammars (Section 4.2) applies equally to 

sorts, in particular, to sorts dealing with geometries. Moreover, the concept 

of computation-friendly is equally applicable to sorts. Completing the details 

of the above argument is left as future research — indeed, another 

dissertation in its own right. 
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